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Abstract

Regulating technology prices can raise adoption yet deter innovation. In India,
price controls on genetically engineered (GE) cotton seeds induced this trade-off.
Leveraging the policy’s differential timing across states, we show that mandated
price reductions accelerated adoption of GE seeds by farmers. Although seed
supply kept pace, innovation stalled: fewer new varieties were introduced. Using
newly assembled data from experimental field trials across India, we show that
agronomic yields of new varieties fell in price-controlled states. To quantify the
welfare implications of price and yield effects, we develop and estimate a struc-
tural model of demand and supply for seeds with endogenous product attributes.
While the policy raised farmers’ surplus, especially among the poor, ignoring in-
novation responses in equilibrium vastly overstates their welfare gains. We use
the estimated model to assess alternative policies that better balance adoption and
innovation incentives. For a given public budget, incentives for seed developers
tied to the productivity of new varieties achieve the highest welfare for farmers.
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1 Introduction

Under-adoption of modern technologies and under-provision of innovation drive

productivity gaps in developing economies (Parente and Prescott, 1994; Basu and

Weil, 1998; Acemoglu and Zilibotti, 2001). Efforts to close these gaps often focus on

promoting the broad diffusion of productive technologies. However, policies aimed at

increasing adoption may have unintended consequences on innovation. In this paper,

we provide empirical evidence on this adoption–innovation trade-off in the context

of price regulation and quantify its welfare implications. Given budget constraints

and limited state capacity in low-income countries, regulating the price of existing

technologies is an appealing policy to encourage adoption. Yet regulated prices may

lower incentives to develop superior technologies, discouraging technology providers

from investing in R&D and compromising product quality.

The tension between adoption and innovation incentives is salient in developing-

country agriculture. On the demand side, smallholding farmers face multiple barriers

to adopting modern technologies, such as improved seeds (Foster and Rosenzweig,

2010; Suri and Udry, 2022). Policies that lower user prices are a natural lever to raise

adoption and they could yield large welfare gains. On the supply side, agricultural

output growth has come from incremental, locally adapted technological advances

(Evenson and Gollin, 2003; Gollin et al., 2021). While most frontier technologies orig-

inate in rich countries (e.g., genetic engineering in the US), they require adaptation to

local geo-climatic conditions when deployed to non-original contexts (Pardey et al.,

2010; Moscona and Sastry, 2025). In addition, seed varieties must be continually up-

dated to cope with changes in the biological environment and maintain productivity

gains over time (Olmstead and Rhode, 2002, 2008). Regulating prices may disrupt

this flow of innovation and, ultimately, reduce farmers’ welfare in equilibrium.

We study the equilibrium effects of price controls on genetically engineered (GE) cot-

ton seeds in India, the largest cotton-producing nation globally and a hub for biotech-

nology research in South Asia. We leverage state-specific caps on the retail price of Bt

cotton seeds, a group of varieties embodying a genetic technology that confers pest

resistance and so reduces crop loss. The Bt technology alone is not directly useful to

farmers: domestic seed firms must embed it in locally adapted varieties for India’s

ecologies. Price controls were enacted in 2006 in three Indian states (Andhra Pradesh,

Gujarat, Maharashtra) and expanded nationwide in 2015. The unanticipated timing

of the policy across states and the localized nature of innovation generate variation

to identify how farmer adoption and firm innovation respond to lower prices.
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Using a difference-in-differences (DiD) design and farmer-level longitudinal data,

we evaluate the impact of the price caps on the demand side. To analyze supply-

side responses, we bring together administrative data on seed companies and newly

digitized records on GE products, including regulatory approvals and experimental

field trials. Finally, we develop a structural model of demand and supply for the

cotton seed market. Our model can separately recover farmers’ willingness to pay for

seed price and quality; profit-maximizing firms optimally set both price and quality.

This allows us to: (i) decompose the overall effect of the policy on farmers’ welfare,

not only through price changes but also through endogenous quality adjustments;

(ii) simulate counterfactual scenarios with alternative subsidy schemes.

Reduced-Form Results. The policy achieved its stated goal of making seeds more

affordable, thereby accelerating the diffusion of Bt cotton. We find that farmers in

states with price controls pay 40% less for cotton seeds than farmers in states without

controls, closely matching the government-mandated caps. Although price controls

were implemented at the state level, their impact was amplified nationally through

the renegotiation of royalty fees between the Bt technology provider (i.e., Monsanto)

and its licensees (i.e., downstream seed firms engaged in breeding and marketing

cotton varieties that incorporate Bt). The renegotiated royalties applied uniformly to

all licensees, regardless of where seeds were sold, and reduced Bt seed prices by 70%

from pre-policy levels in every state. Because the policy bundles regulated retail prices

with a nationwide cut in royalties, our cross-state reduced form likely understates its

total impact on affordability and farmer welfare.

In price-controlled states, the drop in farm-gate prices increased the adoption of Bt

cotton by 23 percentage points (pp), about 30% relative to observed trends in other

states. Adoption delivered substantial benefits to farmers. Insecticide and labor ex-

penditures fell by over 25% and 38%, respectively, a few years after the policy was

enacted, likely a consequence of learning how to use the new technology. Total pro-

duction costs decreased by 24%, generating a massive surge in cotton cultivation

through the entry of new farms. The effects are persistent over time and highly

robust to contemporaneous state-level shocks and cross-state spillovers.

Despite initial gains among technology end-users, price controls may have unin-

tended consequences on technology providers, undermining private incentives to

supply sufficient quantity or invest in product quality. In India’s cotton seed market,

pricing is the primary channel through which firms recoup R&D costs and appropri-

ate innovation rents. Consequently, retail price caps compress the profit margins that
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fund the development of locally adapted varieties embodying the Bt technology.

To investigate effects on the supply side of the market, we use a proprietary database

on private seed companies and find no evidence of seed shortages or market destruc-

tion attributable to price controls. The sales of cotton seeds do not decline relative

to other agricultural inputs in the short term. Nevertheless, three years after the im-

plementation of the policy, we observe an outright halt in the introduction of genetic

crop technologies, coupled with a sharp fall in the number of new varieties developed

by domestic cotton seed firms, despite limited market exit. As the pace of product

innovation slows down, we document a decrease in varietal replacement rates at the

farm level, resulting in a gradual increase in the age of seed varieties planted by

cotton farmers.

To study innovation incentives, we take advantage of a key feature of our setting:

seed innovation is incremental and highly localized. We compile a novel dataset

on agronomic performance at the product level, based on experimental field trials

from third-party regulatory testing. This allows us to observe over 600 cotton seed

varieties tested in different states, before and after the policy, and so measure changes

in innovation output over space and time. We obtain two main findings. First, we

exploit the repeated evaluation of identical varieties in identical field stations across

time and provide an empirical test of the “Red Queen hypothesis”.1 We find that

cotton varieties experience rapid productivity decays, losing 6 to 7% of their yield

per year. While unrelated to the policy, this naturally-occurring decay highlights the

need for seed developers to regularly update existing varieties to maintain agronomic

performance.

Second, we leverage the fact that varieties are tested across multiple states to identify

the causal effect of price controls on local innovation output, comparing experimen-

tal field trials in price-controlled states versus other states in a DiD design. We find

that agronomic yields of newly released Bt varieties fell by 30% in price-controlled

states. The yield drop caused by the policy is sizable, especially when compared to

agronomic estimates of yield gains from (i) the Bt technology alone in India (58% on

average, up to 80% under high pest pressure, Qaim, 2003) and (ii) the introduction

1 Seed varieties gradually develop increased vulnerability to pests and pathogens over time, which
inevitably compromises their productivity: a stylized fact known in evolutionary biology as the “Red
Queen hypothesis”. This stands in stark contrast to other areas of technological innovation, such
as manufacturing and industrial automation, where advancements do not experience a decline in
efficiency but rather get supplanted by superior alternatives. Endogenous technological obsolescence
also manifests in some spheres of health and pharmaceutical research, which deal with the prevention
or mitigation of co-evolving diseases (e.g., due to antimicrobial resistance, Dubois and Gökkoca, 2025).
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of a new cotton variety (16-21%, based on our data). The effects take three years

to fully materialize, are not driven by differential trends preceding the policy, and

remain robust to a wide array of confounding factors and empirical strategies. Quali-

tative interviews suggest that this yield drop stems from lower research budgets and

a strategic reallocation of innovation effort in response to policy-induced profitabil-

ity differentials across states. All in all, our reduced-form results reveal that price

caps curtailed the innovation pipeline of seed firms, leading to a distortion in the

development of new, location-specific varieties over the long run.

Structural Model and Estimation. We develop a structural model of demand and

supply for cotton seeds in order to estimate counterfactual scenarios and quantify

the welfare implications of price and quality responses altogether. Our model allows

for rich consumer preference heterogeneity and, importantly for our empirical appli-

cation, two endogenous product attributes. On the demand side, farmers optimally

choose between brands of cotton seeds (and outside option crops) by considering

their retail price and expected yield. On the supply side, oligopolistic firms sell dif-

ferentiated products, endogenously setting both prices and yields to maximize profits.

Production costs depend on yields, creating a trade-off between meeting farmer de-

mand for high-yielding varieties and the costs required to develop and commercialize

them.

We estimate demand by combining unique, nationally-representative individual

choice data with aggregated statistics on market shares (à la Grieco et al., 2025) and

using market structure instruments alongside an extensive set of fixed effects. Our

demand estimates suggest that farmers are sensitive to both prices and yields, with

average elasticities of 3.3. Smallholders are more sensitive to prices than to yields,

in line with wedges between perceived and actual prices and heterogeneous returns

to technology adoption, which are typical of agricultural markets in developing

countries (Suri, 2011). On the supply side, we specify and estimate parametric cost

functions that depend on yields, from which we recover marginal costs and implied

markups. To address potential endogeneity arising from unobserved cost shocks,

we instrument for yields using variation in demand shifters, i.e., exogenous shocks

that affect farmers’ demand but not firms’ costs. Finally, we use the estimated model

primitives to find equilibrium outcomes under a set of counterfactual scenarios.

Welfare and Counterfactuals. Compared to a scenario with no price regulation, the

observed policy increases farmer surplus by making Bt products more affordable

and thus broadening their adoption. Price controls disproportionately benefit the
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poor, who are more price-sensitive and less likely to adopt Bt in the absence of the

policy. Nevertheless, consistent with our reduced-form evidence, the endogenous

quality adjustments undertaken by firms are quantitatively important: the decline in

product yields under price regulation offsets 31% of the welfare gains for farmers,

relative to a naïve benchmark where firms do not respond and keep yields fixed.

The positive impact of the policy is a direct result of the large magnitude of the price

drops. These were attainable since the policy effectively induced a renegotiation of

Bt royalties (to compensate Monsanto for its genetic technology) and enabled local

firms to keep operating in the market. In light of this, we further decompose the

price change into two components: one attributable to lower royalties on Bt, and the

other to the retail price ceiling. Our structural estimates imply that two-thirds of the

observed price reductions are explained by lower royalties. Motivated by this finding,

we allow for broader responses to the diminished returns on upstream innovation.

Since genetic crop technologies take longer to become obsolete than hybrid varieties,

we couple the drop in royalties with estimates on the future yield losses arising from

the observed halt in genetic advances. Yield loss estimates, informed by India-specific

agronomy and entomology literature, are large enough to reverse the policy’s initial

benefits, ultimately turning its net welfare impact on farmers negative.

We design and assess alternative policies that seek to mitigate the trade-off between

product affordability and technological innovation. We compare price caps to more

commonly used input subsidies to farmers and innovation subsidies to firms. The

key difference is that, in these counterfactuals, the government bears the fiscal bur-

den of sustaining adoption, rather than shifting it to the private sector. To replicate the

equilibrium prices achieved under regulation, the government would have needed to

implement a 55% linear subsidy. The high fiscal cost of such a policy may help explain

why budget-constrained state governments in India opted for price caps instead. Al-

locating the same budget to seed firms as a performance-based grant, proportional to

realized yields, results in higher prices for farmers but delivers dramatic yield gains

and greater welfare than the farm subsidy. As the channels of welfare gains differ, so

do their distributional incidence. Farm subsidies raise surplus through lower prices

(while preventing yield losses); firm grants do so through quality upgrades (that

come with higher prices). Our counterfactuals imply that, at equal levels of aggre-

gate farmer welfare, the poorest are better off under subsidies than under innovation

grants. Hence, even if fiscally costly policies can balance adoption and innovation

incentives in the aggregate, the planner’s choice entails an equity–efficiency trade-off
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across the distribution of farmers’ wealth.

Related Literature. Our paper contributes to the long-standing literature on techno-

logical adoption and productivity gaps in developing-country agriculture (reviewed

by, e.g., Jack, 2013, Suri and Udry, 2022). We study the introduction of a frontier

technology in cotton, a leading cash crop suitable for cultivation in several develop-

ing countries due to its drought-tolerant nature. Unlike the Green Revolution for

food staples, advances in cotton seed technology are driven by for-profit innovation

by private firms. In the context we study, technology uptake is found to be highly

responsive to a reduction in input prices, motivating large gains from government in-

tervention.2 However, farmers’ welfare gains from increased adoption are ultimately

shaped by firms’ endogenous innovation responses. While the literature has focused

on demand-side factor-price distortions and misallocation in agriculture,3 our findings

point to a complementary explanation: productivity gaps may persist not only be-

cause farmers fail to adopt available technologies, but also because supply-side market

distortions curb firms’ incentives to innovate and provide improved technologies.

We also contribute to work on transgenic crops in developing economies and, more

specifically, to the ongoing debate on Bt cotton in India. We focus on reallocation

within agriculture induced by input price changes, rather than on reallocation – of

labor (Bustos et al., 2016, 2023) and capital (Bustos et al., 2020) – across sectors associ-

ated with input-embodied genetic technologies. We highlight how affordability can

shape technological diffusion, the spatial distribution of transgenic crops, and their

consequent impacts on farming and productivity.4 Our results are consistent with

heterogeneous impacts of Bt across regions and over time in India (e.g., Kathage and

Qaim, 2012; Plewis, 2019; Kranthi and Stone, 2020).

Relatedly, there is growing interest in technological “appropriateness” and the am-

biguous consequences of applying frontier innovations developed in (and for) rich

2 This is often not the case. Macours (2019) reviews experimental studies of input subsidy programs in
developing countries and finds that the adoption of yield-enhancing technologies is low even when
heavily subsidized, unveiling limited demand among a large share of smallholding farmers. Evidence
on the effects of input price controls in agriculture, as an alternative to input subsidies, is scant.

3 See, e.g., Adamopoulos and Restuccia (2014), Shenoy (2017), Gollin and Udry (2021), Adamopoulos
et al. (2022), Chen et al. (2023); reviewed by Ghatak and Mookherjee (2025). On intermediate inputs,
specifically, see Restuccia et al. (2008) and Donovan (2021); on India, see Foster and Rosenzweig (2022),
Chakraborty et al. (2025), and Bolhuis et al. (forthcoming).

4 Hansen and Wingender (2023) show that the cultivation of GE varieties raised agricultural yields
globally, with the largest effects concentrated on cotton and warmer climates, while keeping harvested
area constant. Qaim and Zilberman (2003) note that heightened pest pressure and low crop protection
in developing countries and tropical regions, such as South Asia and sub-Saharan Africa, imply higher
yield advantages from GE cotton than in high-income countries and temperate zones.
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countries to lower-income settings (Akerman et al., 2025; Lerner et al., 2025; Moscona

and Sastry, 2025). We zoom in on the microeconomic actors, who effectively adapt a

global technology to suit local contexts. These actors encompass domestic seed firms,

whose core task is crafting locally adapted varieties, often using genetic technologies

licensed from multinational companies. Understanding how the market structure

and profit incentives of these intermediary firms affect technological progress in de-

veloping countries is a crucial issue for the design of agricultural and innovation

policies, which has yet to be systematically investigated.5 At the same time, opti-

mal policy hinges on public preferences for redistribution: prioritizing access for the

poorest farmers versus quality upgrades that accelerate productivity growth.

Our results are relevant to a broader literature on the welfare implications of price and

IP regulation. Prior empirical work has explored the consequences of price controls

and deregulation policies in technological markets, such as pharmaceuticals, focus-

ing on access, production costs, industry entry, R&D, introduction of new products,

and advertising.6,7 We contribute on two fronts: causal identification and direct mea-

surement of innovation responses. Identification leverages unanticipated changes in

price regulation across Indian states, in a setting where innovation is incremental and

highly localized. Measurement is enabled by physical yields in experimental field

stations. The findings from both our reduced-form and structural analysis illustrate

the fundamental trade-off between technological adoption and innovation. Ignoring

the re-optimization undertaken by technology providers in response to price regu-

lation would lead to a significant overestimation of long-term welfare impacts on

technology end-users. This is particularly relevant to the agricultural sector, where

seed technologies are not universally transferable nor readily imported off the shelf.

To evaluate welfare impacts and policy counterfactuals, we adapt structural tools

from empirical industrial organization. Our approach builds on Ciliberto et al. (2019),

5 The nascent literature on adaptation responses to climate change in developing countries has mostly
focused on farmers’ decisions, such as adopting existing technologies or changing agricultural prac-
tices (Emerick et al., 2016; Glennester and Suri, 2018; Kala, 2019; Aker and Jack, 2023; Kondylis et al.,
2024; Lane, 2024; Patel, 2025; reviewed by Carleton et al., 2024). By contrast, our results shed light on
the decisive role of the private sector in developing new technologies for climate adaptation: we show
that negative profit shocks can hamper innovation and erode product quality in a developing-country
agricultural technology market, such as Indian cotton.

6 A non-exhaustive list of papers on these outcomes includes Kyle (2007), Filson (2012), Cockburn et al.
(2016), Dubois and Lasio (2018), Dubois et al. (2022), Maini and Pammolli (2023), Ji and Rogers (2024),
Hristakeva et al. (2025); on India, see Chaudhuri et al. (2006), Dean (2023), Gupta and Cao (2024).

7 Motivated by seminal models of endogenous growth, where profit incentives to innovate drive long-
run technological progress (Romer, 1990; Grossman and Helpman, 1993; Howitt and Aghion, 1998),
a concurrent strand of the literature has attempted to estimate the elasticity of innovation to market
size, with a particular focus on the pharmaceutical industry (Acemoglu and Linn, 2004; Finkelstein,
2004; Blume-Kohout and Sood, 2013; Dubois et al., 2015; Myers and Pauly, 2019).
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who propose a discrete-choice model of seed demand for GE crop varieties in the US.

We depart in three ways: (i) we analyze a developing-country market; (ii) we allow

for heterogeneity in farmers’ willingness to pay for seed price and quality (measured

by yields); (iii) we incorporate the supply side by explicitly modeling firms’ joint

decisions over price and quality in a price-controlled environment.8

Outline. Our paper is organized as follows. Section 2 describes the context and

policy we study, while Section 3 details the data sources we use in the empirical

analysis. Section 4 and 5 present reduced-form and structural evidence, respectively,

on both sides of the market. Section 6 assesses the welfare implications of observed

and alternative policies. Section 7 concludes.

2 Setting

2.1 Cotton Agriculture in India

We study the introduction of a technological innovation into cotton farming in India.

India is the world’s largest cotton producer and accounts for 20% of global output.

Cotton is an important crop in Indian agriculture: it directly employs over 6 mil-

lion farmers and indirectly involves 45 million people in related activities, such as

fiber processing and textile manufacturing (USDA, 2024). Cotton is planted in the

North, Central, and South zones of India. The northern zone cultivates cotton us-

ing irrigation and short-duration varieties, whereas the central and southern zones

typically grow rain-fed cotton, under different pest environments, disease risks, and

crop rotation systems. This wide spatial heterogeneity underscores the importance

of localized innovation and fine-tuned adaptation to India’s distinct agro-ecological

requirements.

The productivity of cotton agriculture in India continues to lag far behind the rest of

the world (Appendix Figure A1). The average cotton yield is around 1,270 kilograms

per hectare, slightly over half of the global average and substantially less than the

world’s leader China (6,635) or the United States (2,840). The drivers of low yields

are a subject of debate, with explanations ranging from the small size of farming op-

erations (the average size of cotton holdings in India is 1.5 hectares), under-adoption

8 Our empirical framework is inspired by an expanding literature on the importance of allow-
ing for endogenous product attributes and quality choice in equilibrium models (Mazzeo, 2002;
Draganska et al., 2009; Wollmann, 2018; Crawford et al., 2019; Fan and Yang, 2020; Barahona et al.,
2023; Atal et al., 2025). In particular, our parametrization of the marginal and fixed cost functions
follows the approach of Fan (2013) and Barwick et al. (2024).
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of modern inputs, irrigation, and machinery, high row space between cotton plants

for manual pest control, and lack of innovation by seed-producing companies (Blaise

and Kranthi, 2019). In February 2024, a Parliamentary Panel Report on the Cotton Sector

pointed to “outdated Bt seed technology, whitefly and pink bollworm infestation”

as main culprits and noted that “the country is in dire need of varieties of cotton

seeds/plants that are adaptive/suitable for our soil and climatic conditions”.

Seed Industry: Market and Cost Structures. Crop varietal development as well as

seed production and distribution are done by both the public and private sector. The

public sector operates mainly through agricultural universities that develop new va-

rieties and government agencies that multiply and distribute them to farmers. Over

time, however, the private sector has come to dominate the market: according to

Spielman et al. (2014), it accounts for 76% of seed sales in India, with an even larger

share among cash crops and hybrid varieties. Cotton, in particular, is almost ex-

clusively supplied by private companies.9 Unlike open-pollinated varieties, hybrids

have biological properties that are akin to “built-in” IP. This is because seeds saved

from hybrid crops do not exhibit the same vigor as the parent generation, preventing

farmers from recycling them. Such a feature enables firms to recoup their investments

in varietal development and likely explains the growth in private-sector involvement

since the 1980s (Murugkar et al., 2006).

Cotton seed firms in India are mostly local, family-owned, and medium-sized com-

panies. The market is oligopolistic: in 2014, the largest firm held less than 15% of

the market, while the top 3-firm and 5-firm concentration ratios were 42% and 62%,

respectively (Appendix Table E1). Since importing seeds for major crops like cotton is

not permitted in India, these firms manage vertically integrated operations: in-house

R&D for hybrid development, seed production via contracted growers, post-harvest

processing and quality controls at owned plants. Multinational biotech firms partic-

ipate in the Indian seed industry as well, mostly by licensing biotechnologies, such

as GE traits, to domestic seed firms, rather than engaging directly in seed produc-

tion and marketing. These traits are a key input for producing seeds, acting as a

productivity-enhancing technology that is embodied in the final product.

The seed industry is the most research-intensive segment of Indian agriculture and

leads private R&D investment in the sector. Although comprehensive data on cotton-

specific R&D do not exist, research intensity – proxied by R&D expenditure as a

9 For instance, in the sample of cotton farmers described below and employed in the reduced-form
analysis, 98% of the respondents purchase officially labeled F1 hybrid seeds from an agro-input dealer.
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percentage of sales – was estimated at 7% for the overall Indian seed industry in 2009,

far exceeding that of fertilizers (0.1%), pesticides (1.1%), and agricultural machinery

(1.2%) (Pray and Nagarajan, 2012).10 Once hybrids are developed, seed production

is outsourced to contract farmers, who are provided with parent seeds and tasked

with performing hybridization. According to internal cost data we obtained from

two market leaders, contract farmers are paid a fixed procurement rate of 35-40% of

the final price of a seed packet. Processed and packaged seeds are then sold through

a network of agrodealers, who capture a retail margin of 10-15%. Appendix Table A1

provides an itemized breakdown of the cost structure of these two firms.

Downstream and Upstream Innovation: Hybrid Breeding and Genetic Engineer-

ing. Domestic seed companies innovate through breeding, i.e., crossing different

hybrid varieties to enhance the characteristics of the offspring. As we further detail

for the case of cotton in Appendix B, seed development is highly geography-specific,

a natural consequence of the diverse growing conditions and ecological environments

across India. Most firms run a portfolio of multiple breeding programs, each targeted

to distinct agro-ecological segments. This innovation process is time-consuming and

requires substantial investment: developing a new variety can take over five years,

including the process of selecting parent lines, cross-pollinating plants, testing in field

trials, and undergoing regulatory approvals.

Private investment in cotton seed development greatly expanded in the early 2000s,

mostly driven by varietal improvement to incorporate the Bt (Bacillus thuringiensis)

trait into local varieties of cotton. Bt cotton refers to a set of insect-resistant cotton

varieties. These varieties have been genetically engineered to produce a toxin that

damages the midgut lining of bollworms without requiring the targeted application

of pesticides. Since 2000, the Indian authorities have approved 6 genetic events and

over 1,000 hybrid Bt varieties for cultivation.11

10 This compares to a global average of 10.5% R&D intensity on seeds during the same year
(Fuglie et al., 2011). High rates of investment may reflect both the need for local adaptation and the im-
pact of major scientific breakthroughs in seed biotechnology (Pray and Nagarajan, 2013, 2014). During
the study period, over 50 companies were actively breeding cotton in India, 37 of which incorporating
Bt traits into their hybrid lines (Pray and Nagarajan, 2010). Refer to the next footnote for terminology.

11 More descriptive statistics are provided in Section 4.4. “Genetic events”, or “traits”, refer to artificially
induced changes in the plant’s genome that result from the introduction of genetic material, e.g.,
conferring resistance to target pests or herbicides. “Hybrid varieties” indicate plants that are bred by
crossing two different parent lines or varieties to create offspring that possess desirable traits from both
parents. Many different Bt cotton varieties incorporate the same genetic event, which is transferred
from the soil-dwelling bacterium Bt and allows plant cells to produce crystal insecticidal proteins. To
ensure good yields, however, Bt traits must be paired with genotypes that are well-adapted to local
agro-ecological environments through breeding.
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The Bt technology was developed by Monsanto in the early 1990s in the US under

the trade name Bollgard®. Following illegal cultivation and the spread of unapproved

cultivars, Bt was formally introduced to India in 2002 through a joint venture between

Monsanto and the domestic company Mahyco Seeds. The technology was granted a

temporary monopoly and licensed to other seed-producing companies (33 at its peak)

that, in turn, backcrossed it into their proprietary hybrid breeding lines. Licensing

contracts required firms to make an initial lump-sum payment and to then pay a

per-packet trait fee, which were nationally determined; they did not fix the final seed

price. In addition, licensees were expected to invest in equipment, testing facilities,

and greenhouses for field trials. The technology was not widely adopted until 2006,

when it started to rapidly gain favor with farmers. By the early 2010s, over 90% of

the cotton acreage in India was planted with Bt hybrid varieties (Choudhary and

Gaur, 2015). In 2025, Bt cotton remains the only GE crop available for commercial

cultivation in India.

2.2 Bt Cotton Seed Price Controls

«[T]he traders in cotton seed including transgenic seed are exploiting poor

farmers by collecting exorbitant prices; [...] it has become imperative on the

part of the State to regulate the supply, distribution and sale of cotton seeds

by fixing the sale price in the interests of the farmers in the State.»

— Andhra Pradesh Act No. 29 of 2007

Concerns over the high price of Bt cotton seeds during the initial stages of technology

release led some states to cap the retail price of a packet of cotton seeds. In the early

2000s, a seed packet of 450 grams of conventional cotton was sold at 450-650 Indian

rupees (|) while Bt hybrids were introduced to the Indian market at an initial price

of |1,600-1,800, around 33-37 US dollars, or $169-190 in purchasing power parity

(PPP) terms. A large fraction of this cost, namely |1,100, consisted of royalties paid

to Monsanto for the Bt technology. There is extensive journalistic coverage of both

farmers and local seed companies expressing grievances over these licensing fees,

which were conceived as an unfair trade practice.12

12 Other historical accounts on this period can be found in Sadashivappa and Qaim (2009), Pray and
Nagarajan (2010), and Menon and Uzramma (2017). Moreover, Newell (2007) noted that Monsanto
faced heightened public and political scrutiny due to its active commitment to publicize the benefits
of biotechnology in India: social activist groups and legal campaigns accused the company of engaging
in biopiracy, using the terminator technology, and undertaking unauthorized trials.
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In 2006, as a result of a complaint filed by the state government of Andhra Pradesh,

the Monopolies and Restrictive Trade Practices Commission ruled that the state gov-

ernment could set the price of Bt cotton seeds under the Essential Commodities Act.13

Although Mahyco Monsanto Biotech appealed the decision, the price cap was put in

place starting in the 2006 growing season. The retail price of Bt cotton seeds con-

taining the Bollgard 1 (BG-I) trait was capped at |750 per packet. The bordering state

governments of Maharashtra and Gujarat followed suit, imposing identical price ceil-

ings during the same growing season. In the state of Madhya Pradesh, price controls

were announced but later withdrawn due to a legal defeat in the High Court.

Price control acts led to a national renegotiation of the Bt technology fees, which were

slashed to |150 per packet for all licensees and all states. The price caps were updated

in later years to accommodate the introduction of an updated Bt, known as Bollgard 2

(BG-II), a technology developed by Monsanto using a double-gene construct to pro-

vide improved insect resistance. At last, in December 2015, the Cotton Seed Price

(Control) Order was issued by the federal government, stipulating a national maxi-

mum retail price of cotton seeds: the only crop with such regulation in India.14 As

of 2025, this nationwide cap is still in place and is regularly updated by a ministerial

committee in advance of the cotton planting season.

3 Data

3.1 Technological Demand and Agricultural Outcomes

Our main data source for studying how price regulation affects farmers’ technology

adoption is a longitudinal survey from Kathage and Qaim (2012).15 Four waves were

collected on a biennial basis between 2002 and 2008, tracking 533 households in 4

states, 10 districts, and 63 villages. The sampling is representative of cotton farmers in

central and southern India at baseline (2002), and the survey instrument encompasses

13 Anecdotally, Andhra Pradesh was the first state to propose the price-control policy due to the signifi-
cant role played by its civil society and farmers’ groups (Peschard and Randeria, 2020). Environmental
activists opposed the introduction of GE crops based on biosafety and seed sovereignty concerns (e.g.,
Shiva et al., 1999; Sahai, 2002). In addition, Bt was accused of lying behind the phenomenon of farmer
suicides by contributing to indebtedness via crop failure (e.g., Gruère et al., 2008).

14 The rationale behind extending the price controls to the entire nation lies in the large spatial variation
that state-specific caps had resulted in. Verbatim from the federal law: “fixation of sale price by
multiple authorities resulted in fixation of different prices in different States and necessitated fixing of
uniform prices for Bt cotton seeds across the country.”

15 This dataset has been validated and used to quantify the effect of Bt cotton on various household
outcomes, including pesticide use and poisoning (Krishna and Qaim, 2012 and Kouser and Qaim,
2011, respectively), as well as on the agro-ecosystem (Veettil et al., 2017). Nevertheless, the empirical
exploration of seed pricing and its economic implications remain unexplored in the existing literature.
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a wide array of questions on agricultural inputs and output, with a strong emphasis

on Bt-related outcomes.16 Importantly for our empirical exercise, the sample covers

four states, two of which had price controls (Andhra Pradesh and Maharashtra) and

two of which did not (Karnataka and Tamil Nadu), over two pre- and two post-event

periods. Thus, we use these data for causal identification of partial equilibrium effects

among incumbent cotton farmers, excluding selection on entry into cotton farming.

Despite the detailed nature of this panel dataset, its sample size is relatively small to

capture sufficient variation in seed choice and identify substitution patterns across

products. To supplement this, we draw on a unique, proprietary dataset from

the Chennai-based Francis Kanoi Marketing Research, known as the Cotton Crop

Track. Spanning four waves – from 2002, the year of Bt introduction in India, to

2014, by which time adoption rates had surpassed 95% – these data contain a large,

repeated cross-section of around 20,000 farms and 900 villages per wave. The sample

is stratified by landholding and designed to be nationally representative of cotton

farming in each survey year. Besides plot-level seed choice, the survey measures

prices, quantities, acreage, and yields. Seed companies were reported to regularly

subscribe to this dataset so as to obtain market share estimates for both their products

and those of their competitors. The richness of the data and its widespread use by

the industry make it particularly well-suited for the structural estimation of a discrete

choice model of seed demand.

In order to expand our analysis to additional outcomes and to observe switching

across crops – including selection into cotton – we rely on the publicly available Cost

of Cultivation/Production Survey (CCS). This survey scheme reaches roughly

8,000 farmers every year and is implemented by state agricultural universities across

India, under the coordination of the Directorate of Economics and Statistics in the

Ministry of Agriculture and Farmers Welfare (DESMOA). Launched in 2000, the CCS

is a rotating panel with full replacement every three years, allowing researchers to

follow the same set of farm households over three time periods and a repeated cross-

section beyond such interval.17 Plot-level information on input prices and quantities

16 The survey records the specific type of cotton variety planted – a level of granularity rarely found in
agricultural surveys in developing countries – and its corresponding farm-gate price. If a household
has two plots where it plants two different varieties, say a conventional seed of cotton and a hybrid
Bt, input/output data are collected for both varieties at the household-plot level.

17 Farmers in CCS are selected through a three-stage stratified random sampling. First, tehsils or sub-
districts (75 every time the sample is refreshed) are allocated to the different agro-economic zones of a
state in proportion to the area under cultivation; the survey only covers the principal crops in the zone
concerned. Second, a single village or a cluster of neighboring hamlets around a nucleus village in the
tehsil is sampled following the same proportionality criterion. Operational holdings provide the third
and ultimate sampling unit: farms are stratified into five groups according to their total area under
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as well as any other operational expenses are measured in each farming season.

Finally, we have Crop Production Statistics (CPS) on total area and output at the

district level. These two aggregates are reported by DESMOA for each farming season

between 1997 and 2022, allowing us to track the spatial distribution of cotton farming,

including entry and exit, over our study period.

3.2 Product Sales and Technological Supply

To assess the effect of price regulation on the supply side of the Indian seed market,

we turn to administrative data from multiple sources. We observe the performance

of seed companies through Prowess, a proprietary database from the Centre for

Monitoring Indian Economy (CMIE). The data are built from periodical reports and

filings on the universe of listed companies and a larger set of unlisted companies

since 1990. The main variable used in our analysis is product-by-firm-level sales.18

We measure innovation by seed companies through market release of new varieties

and realized product quality. First, we scraped data on GE crop approvals world-

wide from the International Service for the Acquisition of Agri-biotech Applications

(ISAAA). Based on publicly available decision documents of each approving country,

the Biosafety Clearing House of the Convention on Biological Diversity, and schol-

arly articles, this database specifies the genetic trait, agronomic function, technology

developer, country, and year. Second, we digitized the official list of all commercially

released varieties of Bt cotton in India, with information on the producer, the GE

technology, and the target geographic zone (i.e., southern, central, or northern).

We hand-coded information on: (i) the permissions to conduct field trials of GE va-

rieties, the location of such trials, and the number of varieties tested for the Indian

market from the Genetic Engineering Appraisal Committee (GEAC), i.e., the author-

ity of the Ministry of Environment, Forest and Climate Change in charge of approv-

ing large-scale trials and commercial release in India;19 (ii) yields of hybrid cotton

cultivation and then two farms are randomly selected from each stratum, for a total of 10 farms per
village, or 750 per zone (DESMOA, 2008).

18 Out of a total of 46,976 companies, Prowess (February 2024 database vintage) contains 553 firms
selling seeds, of which 215 selling cotton seeds, and 57 firms in the agricultural research and/or seed
sector, of which 31 producing and marketing cotton seeds. The data do not allow to study firm entry
decisions because joining Prowess may be the result of either entry, listing, or a voluntary decision of
the CMIE.

19 In practice, we have official minutes on the universe of meetings held by GEAC (downloaded from
http://geacindia.gov.in/decisions-of-GEAC-meetings.aspx). These are organized in order to
consider applications and other policy issues related to GE. The proceedings record allows one to
identify the specific seed company, hybrid variety, and underlying genetic event under evaluation as
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varieties developed by private companies for the Indian market from a large set of

agronomic field trials, run by the Indian Council of Agricultural Research (ICAR).20

To the best of our knowledge, this is the first comprehensive, micro-level dataset on

research effort and output at the product level for any developing country.

4 Reduced-Form Evidence

4.1 Demand

Identification and Estimation. The regulatory variation, which is generated by the

differential timing of the price-control policy across states, allows us to identify the

effects of the policy on farmers. We do so by considering a simple DiD design with

binary treatment and comparing the change in outcomes in states with formal price

controls (the treatment group) versus states without price controls (the status-quo

group) over the same time period. This approach recovers the causal impact of the

policy, namely the average treatment effect on the treated (ATT), provided that the

following three identifying assumptions hold: (i) there is no spillover from treated

to status-quo states (Stable Unit Treatment Value Assumption or SUTVA); (ii) potential

outcomes would have evolved along a similar trajectory across states in the absence

of the treatment (parallel trends); (iii) the treatment has no effect before its actual

implementation (no anticipation).

Our DiD captures relative effects by comparing states that are directly affected by

price controls to those that are not. Yet the latter group may be indirectly affected

through either treatment contamination (say, due to smuggling of cheaper seeds) or

general equilibrium effects at the national level (say, due to changes in royalty fees or

supply shortages). While we test for spillovers later in this section, aggregate effects

are explored through the structural model in Section 5.

As an estimating equation, we use the following event-study model

Yi,t = αs(i) + αt + ∑
τ ̸=−1

βτ · PriceCaps(i) · 1{t = τ}+ εi,t (1)

well as the decision made by the regulatory authority.
20 These coordinated trials were conducted by public-sector agronomists as part of a national program,

known as All India Coordinated Research Project on Cotton (AICRP). The project comprises a
network of 17 state agricultural universities and 22 local research centers. Trials were aimed at testing
the agronomic performance of cotton hybrids and informing regulatory authorities. Therefore, we
see these data as an independent, third-party evaluation, which is consistent across testing locations
and not directly affected by endogenous choice by farmers. Moreover, firms had no control over the
assignment of testing locations within a regulatory geographic zone, making endogenous selection
into the trials very unlikely (Tandon et al., 2015).
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where Y measures the outcome of interest for a household i, living in state s, in

year t. PriceCap is our treatment indicator, which is equal to one for states that

regulated cotton seed prices in 2006, i.e., Andhra Pradesh, Gujarat, and Maharashtra,

and to zero otherwise.21 As noted in Section 2.2, the introduction of price controls

and the specific level at which prices were capped were widely unanticipated. Our

basic specification includes two-way fixed effects (TWFE), capturing time-invariant

characteristics of each state and time-specific shocks that are common across states;

whenever the data structure allows it, we augment Equation 1 with district, village,

and household fixed effects.τ indicates the number of periods before or after states

regulated prices. In order to estimate the model, we normalize the β coefficients with

respect to a reference pre-event time period, i.e., 2005 (or τ = −1). The error term, ε,

allows for arbitrary intra-cluster correlation within either village or state.22

Besides shedding light on treatment effect dynamics over time, the event-study spec-

ification enables us to examine the existence of parallel trends in the pre-periods, i.e.,

before the policy comes into effect. In particular, we test whether the coefficients βτ

are statistically different from zero for each τ < −1. A second potential concern

for identification in our setting is that farmers from status-quo states may cross the

border into treated states in order to purchase seeds at lower prices. This, in turn, is

likely to bias our estimates toward zero. Therefore, using GPS coordinates, we iden-

tify villages that are located on the border with treated states (henceforth, ‘spillover

villages’). Such villages are then either included in the treatment group or dropped

from the estimation sample, allowing us to mitigate the potential bias introduced by

spillover effects.

First Stage. We begin our empirical analysis by evaluating whether the policy

achieved its stated goal of reducing cotton seed prices at the farm gate. We do

21 The treatment indicator includes the area under the newly formed state of Telangana, which originated
from the bifurcation of Andhra Pradesh in 2014. The Telangana Cotton Seeds Act 2007 was adapted from
the one of Andhra Pradesh, after the administrative reorganization.

22 Within-cluster dependence in our setting arises from both sampling variability and treatment assign-
ment. In the different datasets described in Section 3.1, households are randomly sampled from a
set of villages (at minimum 63 in the panel survey from Kathage and Qaim, 2012), providing a natu-
ral source of uncertainty about population parameters and, therefore, grouping of observations. On
the other hand, given that the treatment status is defined by state governments, a design-based ap-
proach would suggest clustering standard errors at the state level. However, the latter approach only
accounts for between-cluster variation in treatment assignments and restricts the number of clusters
to as few as four in some estimations, making clustered inference subject to important shortcomings.
In Appendix C.1.1, we empirically address this trade-off by testing for the level of clustering (Cai,
2023) and find the village level to be the most appropriate one. For robustness, all tables in the paper
present confidence intervals adjusting for clustering at either level. In Appendix C.2, we consider al-
ternative procedures for inference with few clusters, including small-sample ad-hoc adjustments, wild
bootstrap, bias-corrected variance and aggregation methods in the case of state clustering.
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so by using self-reported data from our four-state panel survey, and we present

event-study estimates in Figure 1. The pre-treatment coefficients provide reassuring

evidence that prices were not growing at a differential rate across states prior to the

implementation of the policy. After the 2006 event, prices dropped by 40% in states

with price controls, compared to states without. The estimated coefficients are stable

across fixed-effects specifications and statistically significant at the 1 percent level,

regardless of the level of clustering as well as after adjusting standard errors for

the small number of clusters (Appendix Table C2). Moreover, the results are robust

to including ‘spillover villages’ in the treatment group or dropping them from the

estimation sample (Appendix Table C3).

Figure 1. First-Stage Effects on Cotton Seed Prices

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares
regressions as in Equation 1: year and Bt seed fixed effects are included in all the models;
additional fixed effects are indicated in the legend below the graph. Standard errors clus-
tered at the village level. Unit of observation: household × plot × survey wave. Data from
Kathage and Qaim (2012)’s panel survey. The outcome is expressed in natural logarithm, so
that coefficients approximate percentage changes. The vertical red line signals the treatment
timing. Full set of estimates in Appendix Table C3.

The short- and long-term DiD estimates, i.e., for τ = 0 and τ = 1, suggest that

the price reduction was achieved in the first year of policy implementation and then

sustained over time. This divergence becomes even more apparent when using na-

tionally representative data over a longer time frame. Appendix Figure A2a plots the

evolution of average costs paid by farmers for cotton seeds from the CCS: while prices
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in treated states were higher before the policy, this gap is completely eliminated in

2006. After a few years of adjustment, the trends diverge sharply between states with

and without price controls, reaching a 20% gap by 2013.

The ATT effects in price-controlled states are measured relative to changes in other

states, overlooking any policy-induced price change that occurred nationwide. Ap-

pendix Figure A3 compares the distribution of Bt-cotton and conventional-cotton seed

prices in the four-state panel before and after the policy. Prices declined across the

board due to the national renegotiation of Bt royalty fees described in Section 2.2.

However, states with price control acts experienced a much larger price reduction:

almost all farmers paid below the price cap, whereas in the other states, a significant

mass faced prices above it. This first-stage variation allows us to isolate the causal ef-

fect of the state-specific caps on farmers’ and seed-producing firms’ outcomes, which

we examine in the remainder of this section. Nevertheless, the general drop in prices

due to lower royalty fees remains a central aspect of the policy’s overall effect. The

structural model presented in the next section enables us to also account for the na-

tional decline in prices and decompose the role of each component, which is crucial

for assessing welfare impacts of counterfactual policies.

Technological Adoption. The substantial reduction in cotton seed prices, result-

ing from the policy being studied, boosted farmers’ adoption of the Bt technology.

Households in price-controlled states were more likely to plant Bt seeds on their cot-

ton plots in 2006 by 29 pp (Figure 2), i.e., almost a 50% increase compared to the

sample mean in the pre-policy period and 38% over the counterfactual mean. Treated

states maintained a significantly higher level of technology adoption in 2008, where

the probability of adopting Bt was 23-pp higher. Again, the estimates are slightly

higher when considering the potential spillover effects and survive alternative infer-

ence procedures to deal with few clusters (Appendix Tables C4 and C2).23

These effects are entirely driven by first-time adopters, i.e., farmers who had never

used such technology in the past. Also, we observe that, following first adoption,

farmers do not revert to conventional seeds, suggesting that Bt seeds were perceived

as profitable by users and that the process of technology diffusion triggered by the

23 We cannot test whether farmers reacted to the price drop in the nationally representative data because
the CCS survey instrument only introduced a question on Bt in 2007, i.e., one year after the policy
event. However, the post-treatment trends in Bt adoption across states in Appendix Figure A2b confirm
the pattern in our main DiD estimates and align with the well-known S-shaped curve of diffusion
(e.g., Griliches, 1957). Starting from similar levels in 2007, price-controlled states experienced a stark
acceleration in the rate of adoption, reaching almost 100% in 2010, whereas the other states achieved
an average adoption of 50% during the same period.
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Figure 2. Effects on Bt Cotton Adoption

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares
regressions as in Equation 1: year fixed effects are included in all the models; additional
fixed effects are indicated in the legend below the graph. Standard errors clustered at the
village level. Unit of observation: household × plot × survey wave. Data from Kathage
and Qaim (2012)’s panel survey. The outcome is an indicator variable equal to one if the
household planted a Bt cotton variety in the plot and equal to zero otherwise. The vertical
red line signals the treatment timing. Full set of estimates in Appendix Table C4.

policy was long-lasting. At the intensive margin, we find that price controls raise

the rate of input usage: the physical quantity of seeds planted per acre increased by

24.4% in 2006 and 39.4% in 2008 among treated states (Appendix Table C5).

Substitute Inputs. The main benefit from adopting Bt seeds is that they provide

enhanced protection against certain insect pests, particularly the cotton bollworm.

Therefore, we expect farmers to spend less on insecticides, especially on those aimed

at preventing bollworm infestations. Estimates in Appendix Table C6 reflect such

adjustment, though the negative effects only appear after a learning phase: while we

find no statistically significant difference in 2006, insecticide expenditures in price-

controlled states decrease by 33% in 2008.24 This late decline is driven by reduced use

at the extensive margin of insecticides against the American and spotted bollworm

24 The insufficient adjustment in pesticide use is in line with the model of selective learning proposed
by Ghosh (2019) for the case of Bt cotton, where farmers tend to acquire information by observing
average productivity of each input, rather than of specific input combinations. This is a more gen-
eral phenomenon in agriculture, where adoption decisions are connoted by multidimensionality and
interdependence due to the costs of re-optimizing inputs and practices often associated with new
technologies (Laajaj and Macours, 2024).
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complex, which are the explicit target of the Bt toxin (Appendix Table C7).

A complementary advantage of planting Bt cotton seeds, coupled with diminished

insecticide application during crop growth, is the potential decrease in labor demand

for pest control activities and cotton boll picking on the farm.25,26 In line with this,

Appendix Figure C1 shows that the policy treatment reduced the number of working

hours from hired labor, which is largely carried out by casual workers, by up to

40%.27 Again, these effects are not immediate and only manifest after a few years

of technological learning. On the contrary, we do not find any effects on household

labor (Appendix Table C8). The reduction in hired labor hours generates a similarly

sized decrease in labor expenses following the policy (Appendix Table C9).

Production Costs. Lower seed prices, combined with fewer expenditures on insec-

ticides and labor, result in large cost reductions for cotton farmers. Figure 3 plots

event-study estimates on the cost of cotton seeds and on the total cost of cultivating

cotton as measured by the national CCS.28 The dynamic treatment effects demon-

strate the persistent impact of the policy. Despite cotton seed costs making up a

relatively small fraction of the overall cost of cultivation (on average, 20%), the higher

use of the Bt technology is associated with an estimated decrease in the overall cost of

24%, pooling post-treatment periods (Appendix Table C10). These results are robust

to using a triple DiD strategy, which considers crops other than cotton (in the same

state) as additional counterfactual. This assuages concerns that the estimated effects

are driven by other state-level shocks, such as contemporaneous changes in agricul-

tural policies. We detail the alternative empirical strategy and compare the respective

estimates in Appendix D.

25 Indian cotton varieties are characterized by staggered blooming patterns. While conventional cotton
required as many as five to six picking operations, which are almost entirely performed by hand in
India, Bt hybrid varieties were found to have more synchronous fruiting and maturity, reducing the
number of pickings needed to as few as three in some cases (Mayee et al., 2004).

26 For this part of the analysis, we are not able to continue using the four-state panel survey because
it lacks comprehensive reporting of labor inputs. Therefore, we momentarily shift to the CCS data,
where trends in cotton seed costs and Bt adoption are consistent with our four-state panel.

27 This is a context with a relatively low level of mechanization: in our estimation sample, 55.7% of cotton
producers own animal labor and 28.1% own some form of agricultural equipment. Cotton farming in
India, especially at weeding and picking harvest time, is largely performed by female manual labor:
96.7% of cotton farms employ casual labor and 17.7% have permanent employees.

28 We continue to use CCS for two reasons: (i) it is explicitly designed to capture the overall cost of
cultivating a crop, including cotton, across Indian states – the survey instrument encompasses any
source of expenditure faced by farmers, from purchasing agricultural inputs to paying for animal
and human labor, from covering irrigation and machinery charges to any other rent for land; (ii)
our four-state panel survey does not include exhaustive measures of labor costs, which are the main
components of total costs in this context.
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Figure 3. Effects on Cotton Costs per Acre

(a) Seeds (b) Total Inputs

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares regressions as
in Equation 1: year and season fixed effects are included in all the models; additional fixed effects are
indicated in the legend below the graph. Standard errors clustered at the village level. Unit of observa-
tion: household × parcel × plot × season × year. Data from the Cost of Cultivation/Production

Survey. The outcome is expressed in natural logarithm, so that coefficients approximate percentage
changes from the pre-treatment comparison period (i.e., 2005). The vertical red line signals the treat-
ment timing. Estimates pooling pre- and post-treatment periods are in Appendix Table C10.

Agricultural Output. The adoption pattern in response to the government-mandated

price reduction suggests that cotton farmers view the Bt technology as a profitable

investment. We leverage our production data in order to test whether productiv-

ity gains materialize in the aftermath of the policy. Figure 4 shows that the policy

treatment had a significant and sizable effect on cotton yields, which went up by 255

kilograms per hectare (p<0.001) in the first period, i.e., around 35% over the coun-

terfactual mean.29 However, this effect completely disappears in the second survey

wave with no detectable difference between treated and status-quo states.

The lack of a lasting impact may be explained by a combination of factors: first, as

pointed out by Herring (2013), the yield effects induced by the Bt gene are tightly con-

nected to the extent of pest pressure observed during the agricultural season, which,

in turn, depends on many environmental factors, first and foremost the weather.30

Analogously to how irrigation water insures against the lack of rain, Bt provides a

form of insurance policy for cotton farmers, where the returns from investing in Bt

increase with stochastic bollworm pressure. Although not representative of our sam-

ple of villages, the crop-pest-weather database from ICAR’s Central Research Institute

for Dryland Agriculture indicates that bollworm pressure was lower in the 2008/2009

29 The size of the implied treatment-on-the-treated effect of Bt adoption on yields is statistically indistin-
guishable from the 668 kg/ha increase estimated by Qaim and Zilberman (2003) using on-farm field
trials conducted before the commercial approval of Bt.

30 For a theoretical generalization of this argument, see Rosenzweig and Udry (2020).
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Figure 4. Effects on Farm-Level Cotton Yields

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares
regressions as in Equation 1: year fixed effects are included in all the models; additional
fixed effects are indicated in the legend below the graph. Standard errors clustered at the
village level. Unit of observation: household × plot × survey wave. Data from Kathage and
Qaim (2012)’s panel survey. Farm-level yields are calculated as self-reported production (in
kilograms) over self-reported cultivated area (in hectares). The vertical red line signals the
treatment timing. Full set of estimates in Appendix Table C11.

season than in 2006/2007 in Maharashtra, one of the price-controlled states (no data

is available for other states in those years). Second, it is possible that the low cost

of cultivating cotton induces farmers to expand their production to marginal – and

potentially less productive – land: we provide some evidence on the latter channel in

the following Section 4.2. Third, and perhaps most importantly, price controls may

have distorted the incentives for private seed firms to supply adequate quantity or

maintain the quality of Bt cotton varieties: these potential margins of adjustment are

at the core of Section 4.3 and 4.4, respectively.

4.2 Farm Entry

The spatial differentiation in farm-gate prices of Bt seeds, generated by the statewide

policies enacted in 2006, alters the costs of cultivation among incumbent cotton farm-

ers, as shown so far. These lower costs, at the same time, are likely to affect cotton

production across states (i) by attracting new farmers, who had not planted cotton

in the past, and/or (ii) by changing the amount of cultivated land devoted to cotton
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among incumbent farmers, who were already cultivating it before the policy. In this

subsection, we unpack these two mechanisms empirically.

Getting on the Cotton Bandwagon. We consider the universe of districts in India’s

cotton-growing states and estimate event-study models on total cotton acreage and

production as in Equation 1. The area devoted to cotton cultivation steadily increases

in price-controlled states (Figure 5a): the ATT effects grow over time, reaching a peak

of 90% in 2010, i.e., five years after the onset of the policy. Cotton production also

increases in treated districts, but the effect dynamics are notably different: produc-

tion spikes in the immediate aftermath of price controls but then plateaus rather than

tracking the continuous rise in acreage (Figure 5b).31 While production per acre ini-

tially rises, this divergence leads to a long-run reversal in productivity (Appendix

Table C12).

Figure 5. Effects on District-Level Outcomes

(a) Cotton Acreage (b) Cotton Production

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares regressions
as in Equation 1: year and season fixed effects are included in all the models; additional fixed effects
are indicated in the legend below the graph. Standard errors clustered at the district level. Unit
of observation: district × season × year. Data from the Crop Production Statistics. Sample:
cotton-growing states. The outcome is expressed in natural logarithm, so that coefficients approximate
percentage changes from the pre-treatment comparison period (i.e., 2005). The vertical red line signals
the treatment timing. Full set of estimates in Appendix Table C12.

The expansion in cotton acreage induced by cheaper seeds arose disproportionately

on marginal land, i.e., districts with lower suitability for Bt cotton. We provide evi-

dence on this by interacting the district-level average of agro-climatic potential yields

for cotton with our treatment indicator in Equation 1.32 The estimated heteroge-

31 See Appendix Figure A4a and A4b for similarly-shaped trends in cotton seed and cotton lint produc-
tion, respectively, nationwide. During this period, India transitioned from being a net importer of
cotton to becoming a major exporter (Appendix Figure A4c).

32 ‘Potential yields’ are based on the 1981-2010 values under irrigation conditions and high input levels
from the Global Agro-Ecological Zoning (GAEZ) database, version 4, compiled by the Food and
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neous treatment effects in Appendix Table C13 (Columns 1-3) reveal that districts

with inherently low suitability for cultivating cotton with improved seeds drive the

overall expansion in acreage. On the other hand, the effects on cotton output in low-

suitability districts are smaller and statistically indistinguishable from zero (Columns

4-6), implying that increased acreage did not yield proportional gains in output in

low-suitability districts (Columns 7-9). We take these results as suggestive that price

controls can introduce spatial misallocation in cropping patterns, reducing the pro-

ductive efficiency gains from the diffusion of new technologies.33

The higher cotton acreage is explained by households’ decision to cultivate cotton

at the extensive margin, rather than by increased area under cotton cultivation at

the intensive margin. First, using the CCS nationally representative sample, we find

that farmers in price-controlled states are more likely to cultivate cotton in the af-

termath of the policy (Appendix Figure C2). The ATT effects, which peak at 6.2pp

in 2009, are large when compared to the sample mean in the pre-event period, i.e.,

13.7% (namely, 21.8% in treated states and 8.8% in the comparison group), and their

gradual increase over time mirrors the aggregate expansion in cotton acreage shown

above. On the other hand, the positive effect on cotton acreage among this set of

farmers is small and not statistically significant (Appendix Tables C14). We repli-

cate the same extensive-margin finding among our panel baseline survey sample,

where households interviewed in Wave 1 are 22.6 and 11.8 pp more likely to keep

cultivating cotton in Wave 3 and 4, respectively (Appendix Table C15).34 Again, the

intensive-margin estimates on cultivated area among cotton farmers are statistically

insignificant (Appendix Table C16).

4.3 Product Sales

The boost in demand, triggered by the observed reduction in Bt cotton prices, can

have two possible effects on the quantity of seeds supplied in equilibrium. With price

Agriculture Organization of the United Nations (FAO) using historical climate data. We split the
sample by either terciles or quartiles in order to have a discrete measure of cotton suitability.

33 Anecdotal evidence from this time period supports this interpretation: especially in southern Andhra
Pradesh and central Maharashtra, farmers converted crop acreage, originally devoted to maize, millet,
sorghum, and soybeans to cotton. Rather than exploiting new black soils, which are naturally favorable
for the cultivation of cotton, this cropping shift relied on “lighter” soils with much lower clay content.
In line with this, Blaise and Kranthi (2019) assert that up to 30% of Indian cotton is cultivated on
marginal environments.

34 Note that, due to the sampling strategy, every household in the first wave of data collection reported
a positive cotton area. In the following three waves, 4.6%, 17.6%, and 5.7% of the interviewed house-
holds, respectively, did not cultivate cotton in any of their plots. In other words, the variation captured
by our ATT estimates is partially explained by the differentially higher exit of cotton farmers in states
without price controls rather than by re-entry in treated states.
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caps in place, firms face lower per-unit margins on Bt cotton seeds. If these margins

are too low to cover production and distribution costs, seed firms may respond by

cutting supply in treated states, leading to shortages. If instead margins remain pos-

itive, the surge in demand may lead firms to increase the quantity of seeds they put

on the market (while adjusting on other dimensions, such as quality). Which of these

forces prevails is an open empirical question, which we address in this subsection.

We start by noticing that, as described in Section 2.1, the largest firms involved in

the Indian cotton seed business have national market coverage. This invalidates the

methodology used for estimating treatment effects on demand by exploiting differ-

ential policy exposure.35 By contrast, to establish a relevant counterfactual for the

supply side, we compare the evolution of cotton seed sales (treated products) to ei-

ther all other agricultural inputs or just seeds for other crops (status-quo products)

and so estimate the following event-study models

Yj,p,t = αj + αp + αt + ∑
τ ̸=−1

βτ · CottonSeedp · 1{t = τ}+ ε j,p,t (2)

where j, p, and t index a company, product, and year, respectively. Y is the monetary

value of sales, while CottonSeed is an indicator variable that is equal to one if the

item sold p is cotton seeds and zero otherwise.36 Our estimation sample includes

any agricultural input or seed seller in the Prowess database, and we allow for intra-

cluster correlation within company. The identifying assumptions are the same as in

Section 4.1: no anticipation, no spillover, and parallel trends.

Appendix Figure C3 plots dynamic DiD estimates from Equation 2. The sales of

cotton seeds do not grow less relative to other inputs or seeds. If anything, in the

short aftermath of the policy event, they significantly increase as compared to status-

quo products. Treatment effects remain positive but converge to zero from τ = 4

onward.37 Instead of fueling black markets, it seems that reduced prices on Bt cotton

seeds allowed more farmers to purchase authorized – rather than illegally-bred –

35 As an additional constraint on such analysis, we do not have firm data on sales at the state level.
However, we should note that treated states accounted for 62% of total cotton production in the pre-
treatment period. This share went up as a result of the policy.

36 Prowess reports information both at the company and at the company-product level. This means
that we can distinguish the sales of cotton seeds from the sales of other products, such as agricultural
chemicals or non-cotton seeds, within the same company. We take advantage of this feature of the
data in order to construct our treatment exposure variable and comparison groups.

37 We find similar effects on physical quantities (Appendix Table C17). However, the sample employed
to estimate effects on quantities is much smaller than and partially not overlapping with the one
of monetary values, due to missing data. In Columns (5-6), we re-estimate the regressions on sale
values on the sample with non-missing data on quantities and find short-term effects of comparable
magnitude.
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seeds, leading to a stark decline in the spread of unapproved cultivars after 2006

(Pray and Nagarajan, 2010).38

These results suggest that the maximum sales price imposed by some state gov-

ernments allowed firms to experience a short-term growth in the volume of cotton

seeds sold to farmers at capped, but still profitable, prices. This is consistent with

our demand-side evidence on increased Bt adoption and farm entry into cotton. Al-

though the policy guarantees positive profits for cotton seed firms, thereby avoiding

market destruction, the prospective margins may still prove insufficient for firms to

make significant long-term investments in new technologies. We delve into this ques-

tion in the final part of our reduced-form analysis.

4.4 Technological Innovation

Investing in innovation is a firm’s intertemporal decision, which depends not only

on its short-term profitability, but also on the expected stream of future returns. By

decreasing the net present value of new products, price regulation can distort the

incentives for conducting research and developing seed varieties with superior per-

formance. This is particularly true in contexts with low and uncertain IP protection,

such as the one under study, where pricing stands as the only device for firms to

recover R&D costs and earn innovation rents. However, given that product devel-

opment is a lengthy process, requiring years of experimentation, plant crossing, and

regulatory trials for approval, innovation responses might take some time to materi-

alize.

We start by looking at these supply responses descriptively through an analysis of

all the GE crop events and cotton varieties released to the Indian market.39 Then, we

leverage temporal and spatial variation in agronomic performance of such varieties,

38 The initial cap of |750 per packet was set below the prevailing prices of illegal Bt cotton hybrids
(e.g., |920 in Gujarat in 2003, Ramaswami et al., 2008; |1,190, on average, across Indian states in 2004,
according to the nationally-representative data we use in this paper). The market share of Navabharat,
the main seller of unapproved seeds containing the Bt gene, went from 2.2% in 2004 to 1.4% in 2008
and 0% in 2013 (Appendix Table E1). For Gujarat, the state where illegal Bt was most common, the
market share plunged from 24.1% in 2004 to 3.5% in 2008.

39 In India, GE organisms like Bt cotton must be approved by the government before being legal for
commercialization (Ahuja, 2018). Until January 2009, firms that wanted to put a new variety on the
market had to submit an application with data from greenhouse tests. The Review Committee on
Genetic Manipulation (RCGM) would decide whether firms could carry out confined trials on fields
(known as biosafety research level 1, or BRL-1). After these were approved, the application would be
forwarded to the GEAC, which approved or denied requests for further large-scale trials (biosafety
research level 2, or BRL-2) and, ultimately, commercialization. In 2009, the authorities streamlined the
approval procedure and created the current “event-based approval mechanism”. This eliminated the
need for BRL-2 trials for new varieties containing one of the four genetic modifications that had been
cleared by the authorities. Varieties containing new genetic events still have to undergo BRL-2 tests.
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as tested in experimental field trials, in order to quantify their rate of productiv-

ity decay and identify policy impacts on product quality, as proxied by cotton lint

yields.40

Descriptive Evidence on Product Innovation and Varietal Aging. We use adminis-

trative data from the ISAAA and GEAC containing the universe of all genetic events

and hybrid varieties of Bt cotton, respectively, that were approved for commercializa-

tion in India. Given that approvals take place at the supra-state level, we are not able

to continue using a DiD design to make any causal claim.

The first event of Bt cotton, Bollgard 1, was approved for public use in India in 2002

and was followed by the introduction of a few competing genetic traits. The approval

of new events completely stopped in 2009: this is an unusual pattern for GE crops,

as is evident in Appendix Figure A5. Across the world, countries that introduce GE

cultivation typically keep on updating their technology over time. This mostly hap-

pens through the entry of new events developed and licensed by foreign companies.

On the contrary, Monsanto India did not introduce successive improvements to its Bt

technology, which were instead launched in other countries during the same period

(e.g., Bollgard 2 with Roundup Ready Flex and Bollgard 3).41

Appendix Figure A7 documents that, following the introduction of Bt in India, there

was an uptick in cotton varietal development as many local companies tried to in-

trogress Bt into their own varieties. However, innovation in hybrid cotton came to a

halt in 2011, around five years after the onset of state-wide price controls: both the

number of seed varieties approved in a year and the number of companies releasing

varieties decreased substantially. This is consistent with an earlier reduction in the

number of applications submitted by firms (Appendix Figure A8), which is driven by

fewer trials being conducted in central and southern India and a three-year pipeline

for regulatory approval.42

As innovation slows down, we use detailed information from ICRISAT’s Village

Dynamics in South Asia (VDSA) panel to document that farmers use older seed

40 “Lint yield” is defined as the quantity of cotton fiber (per hectare), which is obtained from harvested
production after separating it from cotton seeds.

41 In Appendix Figure A6, we provide additional descriptive evidence of a negative impact on the returns
to genetic innovation, by plotting the evolution of royalties paid to Monsanto. After the 2006 state-
wise price controls, royalties continued to grow in aggregate, yet at a much lower rate compared to the
pre-policy period. Only after price regulation was expanded to the entire nation and trait fees entirely
eliminated, we see royalties plummeting and reaching zero in 2021.

42 Due to the simplification in the approval procedure, explained in Footnote 39, there exists no public
information on the number of large-scale trials from 2009 onward.
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varieties.43 Appendix Figure A9 shows that, before the price control, the average

number of years elapsed from market release to planting was less than one. On the

other hand, starting in 2006, seed varietal age steadily rises, reaching 6 years in 2014.

The descriptive evidence provided so far does not necessarily imply that the reduc-

tion in innovation and varietal replacement is causally linked to the price-control

policy. First, after a few years of intense experimentation and product proliferation,

the market may have been saturated. Second, although firms introduce fewer new

products, such products may come with higher quality, e.g., because of learning by

doing. In the remainder of this section, we rule out both of these hypotheses by

exploring productivity dynamics in experimental field trials run by the regulatory

authority and unaffected by farmers’ endogenous decisions.

Quantifying Productivity Decay Over Time. We leverage the fact that seed varieties

are repeatedly evaluated in agronomic trials over time and construct a measure of

varietal age, Age, which is equal to the number of years elapsed since a variety was

tested for the first time. Therefore, we estimate the following fixed-effects regression

log
(

Yieldsv,l,t

)
= αv + αl + ρ · Agev,t + εv,l,t (3)

where v indexes a seed variety, tested in location l and year t. Importantly, the

inclusion of variety and location fixed effects, αv and αl, allows us to compare the

same variety in the same field station over time. Standard errors are clustered at the

variety level.

Table 1 shows that cotton seed varieties lose an average of 6-7% of lint yields every

year: a phenomenon that is known in evolutionary biology as the “Red Queen hy-

pothesis” and is mostly due to the ever-changing pest environment (Footnote 1). The

regression coefficients are stable across specifications, suggesting that the estimated

yield loss is not driven by endogenous differences in testing conditions.44

Causal Evidence on Reduced Productivity in Price-Controlled States. We exploit a

second feature of our data and empirical setting: agronomic trials of seed varieties

are carried out in multiple experimental stations across India, which include states

43 We do not use this data in the reduced-form analysis because, up to 2008, it is only available for six
villages in the states of Andhra Pradesh and Maharashtra (both price-controlled). However, unlike the
other datasets, the survey instrument provides finer detail on agricultural inputs, allowing for a more
precise measurement of specific seed varieties and, therefore, their varietal age.

44 We further validate these results by looking at self-reported yields at the farm level from the ICRISAT-
VDSA data. Using data from ICRISAT, we estimate a productivity decay of 8% per year (results not in
the paper yet). However, despite our final specification controls for household and year fixed effects,
these results should be taken with caution as cotton variety replacement rates may be an endogenous
choice by farmers, introducing selection bias in our estimates.
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Table 1. Seed Varietal Aging and Productivity Decay

(1) (2) (3) (4) (5) (6)

Years elapsed since first trial -0.049** -0.031* -0.066** -0.060* -0.064** -0.068**

(0.022) (0.016) (0.031) (0.031) (0.031) (0.028)

Number of observations 6,760 6,760 6,760 6,760 6,760 6,760
Number of clusters 619 619 619 619 619 619
Adjusted R-squared 0.007 0.088 0.322 0.329 0.359 0.404

Year fixed effects ✓
Variety fixed effects ✓ ✓ ✓ ✓
Variety zone fixed effects ✓ ✓ ✓
Trial state fixed effects ✓ ✓
Trial location fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: seed variety ×
year × trial. Data digitized from the Bt reports of the All India Coordinated Research Project on

Cotton of the Indian Council of Agricultural Research. All regressions are least squares, as in Equation
3 with fixed effects (indicated in the last five rows of the table) and standard errors clustered at the seed
variety level (in parentheses). The outcome, i.e., lint yields, is expressed in natural logarithm, so that
coefficients approximate percentage changes.

under price regulation and states with no such policy. Since innovation is location-

specific in this context (Appendix B), we consider an identification strategy analogous

to the demand-side analysis in Section 4.1.45 Returning to an event-study design, we

compare the agronomic performance of new seed varieties across states using the

following event study

Yv,l = αl + αtv + ∑
τ ̸=−1

βτ · PriceCaps(l) · 1{tv = τ}+ εv,l (4)

where Y averages the lint yield of a seed variety v (produced by company j), tested

in location l (in state s), across all field trials up to its official year of market release,

tv; the other variables are the same as in Equation 1.46 We further augment the

TWFEs, i.e., the location of the field trial and the year of seed variety release, with

company and company-by-year fixed effects, αj(v) and αj(v) × αtv , as well as zone-by-

year fixed effects, αz(l) × αtv . These allow us to capture time-invariant characteristics

of an innovator, innovator-specific trends in quality (e.g., due to learning by doing),

and regional shifts in growing conditions (e.g., due to climate change), respectively.

45 Technology spillovers are inhibited by both the sharp heterogeneity in geo-climatic conditions over
space, which makes plant breeding programs highly localized, and the productivity decay of seed
varieties over time, which rapidly reduces the knowledge benefits between rival companies that op-
erate in similar areas. Moreover, reproducing hybrid seeds requires access to proprietary and closely
guarded parental lines, which are difficult for competing firms to reverse-engineer.

46 For robustness, we consider other moments of the yield’s distribution, such as the sample minimum,
median, and maximum. Also, instead of averaging different field trials over time, we take either the
first trial ever conducted on a certain variety or the last one before release.

30



Standard errors are clustered at the company or state level.

Figure 6 plots event-study coefficients, providing evidence of parallel trends prior to

the policy event and large reductions in lint yields in its aftermath.47 In line with

the length of the regulatory process for release, the effects fully arise only three years

after prices are regulated, reaching an average of -218 kilograms per hectare, i.e.,

-30% compared to the counterfactual mean. Our results are robust to considering

alternative procedures for clustered inference (Appendix Table C18), to controlling

linearly for varietal age at testing (Column 7 of Appendix Table C18), to logging

the outcome variable (Appendix Figure C4), to using other moments of the yield

distribution (Appendix Figure C5), and to the stage of field trials (Appendix Figure

C6). In fact, both varietal age at release and the probability of approval are balanced

by policy exposure (Appendix Figure C7), suggesting that the effects are not driven

by changes in either the timing of product release or the regulatory process. The

inclusion of a seed-variety fixed effect in Column (8) of Appendix Table C18 restricts

the identifying variation to varieties that are tested in at least one treated and one

status-quo state: reassuringly, our results hold.

We hypothesize that firms located in (and, therefore, more likely to sell to) price-

controlled states and firms with smaller market shares (whose profit margins rely on

cotton to a higher extent and whose investments take more years to be recouped)

have sharper reactions to the policy. The heterogeneous treatment effects estimated

in Appendix Table C19 support our hypothesis: the reductions in agronomic yields

among ex ante more exposed firms are larger, averaging 40% in several specifications.

The observed effect on agronomic yields likely stems from within-firm targeting of re-

search effort. Qualitative evidence from unstructured interviews we conducted with

company representatives and plant breeders suggests that this reduction was the re-

sult of managerial decisions to diversify research portfolios toward non-regulated

crops, cut down budgets and staff for cotton, disinvest from improvements in ge-

netic inputs (e.g., through selection of new germplasm and identification of DNA

molecular markers) and applied breeding techniques.48

To understand the magnitude of our results, we compare them to the productivity

47 Consistent with a negative reaction to the policy, these effects are due to a decrease in lint yields in
price-controlled states, rather than an increase in the comparison group (Appendix Figure A10).

48 For instance, in a recent interview, the chief technology officer of Mahyco stated that “we have drasti-
cally reduced staff, investment and activities. [...] We reduced 50-plus staff who were working on GM
crop-related matters. We have cut our funding by 70%. Whatever we had at BRL (Biosafety Research
Level)-I or BRL-II, stages we have put on the shelf.” (‘Govt policies have shrunk Mahyco’s ag-biotech
research spending by 70%’, Financial Express, March 6, 2019).
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Figure 6. Effects on Agronomic-Trial Yields of Cotton Varieties

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares
regressions as in Equation 4: fixed effects are indicated in the legend below the graph. Stan-
dard errors clustered at the company level. Unit of observation: seed variety × company
× trial location. Data digitized from the Bt reports of the All India Coordinated Re-
search Project on Cotton of the Indian Council of Agricultural Research. The outcome
is expressed in kilograms per hectare. The vertical red line signals the treatment timing. Es-
timates pooling pre- and post-treatment periods and using alternative inference procedures
are in Appendix Table C18.

gains from two types of innovation: (i) downstream, incremental improvements from

the introduction of new hybrid varieties; (ii) upstream, radical breakthroughs such

as the Bt genetic modification. First, we estimate the yield advantage of a new vari-

ety (i.e., one being tested for the first time) relative to the pool of existing varieties,

conditional on location and year fixed effects:

log
(

Yieldsv,l,t

)
= αl + αt + η · 1

{
Agev,t = 0

}
+ εv,l,t (5)

We find that a new hybrid delivers an average increase in yields of 16 to 21% (Ap-

pendix Table C20). Given that Indian seed companies release about one hybrid per

state each year, this implies that our estimated treatment effects in Figure 6 are equiv-

alent to two years of typical hybrid breeding effort for a state. Second, because our

data only contain Bt varieties, we draw on previous agronomic assessments: Qaim

(2003) reports a 58% yield advantage of Bt (80% under high pest pressure), using

four years of field trials of three hybrids with and without the Bt gene.49 This implies

49 Developed by Mahyco, the three Bt hybrids (MECH-12, MECH-162 and MECH-184) were the first
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that the innovation response to price regulation offsets over half of the productivity

gains attributable to the Bt technological breakthrough itself. In this sense, maximiz-

ing adoption of an existing technology through capped prices can mislead policy if

productivity losses from reduced downstream innovation are ignored.

5 Structural Model

The reduced-form evidence unequivocally indicates that the price-capping policy

lowered retail prices but also lowered the agronomic yields of GE cotton seeds. A

key empirical question, however, remains: what would prices and yields have been

without the policy? Given that, as reviewed in Section 2.2, price controls triggered a

national renegotiation of Bt technology fees, we cannot identify counterfactual seed

prices and thus farmer choice from the data alone: our DiD estimates only recover

the relative difference in prices – and yields – between states with and without price

control acts. In order to go beyond this evidence and quantify the overall welfare

impact of the policy on farmers, we need to specify a model of demand and supply

for cotton seeds. In this section, we develop and estimate such a model and present

our empirical estimates. Appendix E discusses the data construction and estimation

strategy in more depth.

5.1 Demand

We model demand for seeds using a random coefficients discrete choice model of

differentiated products, where farmers choose the seed that maximizes their indirect

utility. We deliberately opt to model seed demand through a utility model instead of

through profit maximization for three reasons.

First of all, there is widespread evidence that smallholding farmers in developing

countries face substantial frictions to profit maximization due to incomplete markets

for credit, insurance, labor, and land (Udry, 1999; LaFave and Thomas, 2016; Dillon

and Barrett, 2017; Jones et al., 2022). Therefore, seed choice probabilities arising from

assuming profit maximization may not be appropriate to think about counterfactual

choices made by farmers, who face binding constraints.50 Our utility model, instead,

to be approved for commercialization to the Indian market. Before Mahyco started sub-licensing the
genetic trait to other seed companies, these hybrids were considered a key benchmark for gauging the
expected effects of Bt.

50 Existing econometric tools to estimate production functions are built on the assumption that firms
optimally choose intermediate inputs, based on their unobserved productivity and on the choice of
other inputs. Input market frictions, which are pervasive in developing-country agriculture, are likely
to distort input choice and invalidate these methods (Shenoy, 2021; de la Parra and Shenoy, 2025).
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is agnostic about farm production primitives and recovers underlying preferences for

product characteristics that are consistent with the data.

The second reason is that, if farmers are heterogeneously productive, correctly speci-

fying a profit maximization model would require identifying individual productivity

to predict profits under alternative seed choices. This is particularly relevant in the

case of GE cotton – a technology that is associated with major adjustments in other

productive inputs, such as labor and pesticides – and consistent with the results in

Section 4.1. Substantial data limitations, namely due to labor inputs not being mea-

sured in our main datasets, constrain our ability to compute counterfactual profits.

Finally, our discrete choice framework, where price enters linearly into indirect util-

ity, can be microfounded through basic assumptions on the production function of

farmers, as in Ciliberto et al. (2019). These authors show that, under a seed-specific

production technology with constant returns to scale and a fixed proportion of land

and seeds, the individual objective of profit maximization is consistent with utility

maximization.

Economic Primitives. We assume a farmer f in market m (i.e., a district-year pair)

chooses the brand b that maximizes their indirect utility u, given by

u f bm = α · pbm + γ · ybm + ξm + ξbm︸ ︷︷ ︸
mean utility ≡ δbm

+ µz
f bm

(
pbm, ybm; θz)+ ε f bm︸ ︷︷ ︸

farmer-specific
deviation

(6)

where p is price and y is yield. ξm is a market fixed effect, which we include to control

for heterogeneity in output and complementary input prices across time and space.

ξbm is a brand-market specific unobserved utility, containing product attributes that

are observable to the farmer but not to the econometrician. We allow for observed

heterogeneity in individual preferences over product characteristics through the term

µz
f bm ≡ z f m ·

(
θz

1 · pbm + θz
2 · ybm

)
, i.e., a linear combination of price and yield with a

farmer-specific variable z (measuring plot size), whose effect on utility is parameter-

ized by the vector θz. We use plot size because it provides a parsimonious proxy for

a farmer’s scale of production, complementary technology use and cropping prac-

tices, wealth and related demographics (Appendix Table E4). ε f bm is the standard

unobserved idiosyncratic preference shock.

We specify the outside option of farmers as growing other crops that are not cotton

(see Appendix E.1). The utility of not purchasing any cotton seed is assumed to be

u f 0m = β1 · Π0m + β2 · tm + µz
f 0m

(
tm; θz)+ µ

ζ
f 0m

(
θζ
)
+ ε f 0m (7)
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where we allow the utility of the outside option, b = 0, to vary across markets through

its dependence on Π0, the per-hectare profits of growing crops different from cotton.

We include a linear time trend, t, to reflect the impact of cotton biotechnological dif-

fusion on the profitability of rival crops throughout our sample period. We further

allow this process to be heterogeneous across farmers through µz
f 0m ≡ z f m · θz

3 · tm, a

linear combination of the time trend with plot size. Finally, we include a random co-

efficient on the constant term, µ
ζ
f 0m ≡ θζ · ζ f m, to account for unobserved heterogeneity

in the value of outside goods across farmers, e.g., due to underlying differences in

productivity of cotton versus other crops.

Identification. A key identification challenge arises when estimating the preferences

for price, as seed firms may factor unobserved product attributes into their pricing

strategies, generating correlation between pbm and ξbm. To deal with this endogeneity,

we instrument price using two variables: the number of rival varieties offered in the

market (i.e., a district-year pair) and the number of own varieties offered by a brand in

the market.51 We are compelled to use market structure instrumental variables (IVs)

instead of more traditional cost shifters due to the specific nature of the production

process of seeds. Given that fiber envelops the seeds in cotton, producing cotton

seeds is equivalent to producing cotton lint. Therefore, any cost shocks to firms are

also demand shocks for farmers, rendering them invalid for identification of demand.

Furthermore, the underlying variation in relative prices and products offered arising

from the policy (both in markets with and without the policy, given the national drop

in technology fees) contributes to identifying preferences for price. The estimates of

the IV first stage are reported in Appendix Table E5.

Preferences for yield are identified under the assumption that observed yields are

uncorrelated with unobserved demand shocks, conditional on market fixed effects.

In other words, our identification strategy leverages the residual variation in yields

within a district-year pair, i.e., our definition of a market in this setting. We argue

that this is not endogenous to other product attributes given the uncertain output of

cross-breeding, due to environmental factors beyond the control of innovators, and

the fact that firms likely target their innovation adjustments at a higher geographic

51 The number of rival varieties proxies for competitive pressure across brands. The number of own va-
rieties aims to capture cannibalization within brand: when a firm introduces a high-yielding variety, it
may price down parts of its portfolio to expand market share. These shifters affect price through mar-
ket structure rather than through unobserved time-varying demand shocks ξbm. Two features support
the exclusion restriction: (i) a rich set of fixed effects (ξm) absorb systematic differences in demand
shifters at the market level (farmers’ characteristics, labor availability, land quality, transportation
infrastructure, weather, etc.) (ii) regulatory approval takes place at the zone level, so cross-district
variation in variety counts is unlikely to be strategic with respect to local demand shocks.
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level: our supply model assumes that firms set yields at the state level in the next

subsection.

Estimation. We estimate the model using the conformant likelihood estimator with

exogeneity restrictions (CLEER) proposed by Grieco et al. (2025). Individual choice

data and product characteristics are drawn from Francis Kanoi Marketing Research’s

Cotton Crop Track. The data are nationally representative and therefore allow us to

compute seed market shares, albeit with some sampling error. CLEER combines the

likelihood of two mixed logit estimators for these farmer-level and product-level data

with the exogeneity restrictions proposed above on product characteristics. It has

been shown to be efficient and to converge at the fastest rate given the identifying

variation in the data. Importantly, unlike standard BLP approaches (Berry et al.,

2004), CLEER accounts for sampling variability in market shares. We review the

details of the estimation in Appendix E.2.

Demand estimates are shown in Table 2. Columns (1) and (2) present the results

without and with market fixed effects, while Column (3) reports our preferred spec-

ification using IVs. We obtain coefficients for price and yield that have the expected

sign and are statistically significant at the 1 percent level. Our non-linear estimates

on demographic interactions suggest an interesting dimension of preference hetero-

geneity: farmers with larger plots, who are wealthier, more likely to use modern

complementary inputs and so to disproportionately benefit from high-yielding vari-

eties, are less sensitive to prices and more sensitive to yields. Namely, a one standard

deviation change in plot size implies a 10 percent change in the price coefficient.

Also, as plot size increases, farmers reveal a stronger preference for inside goods (i.e.,

for cotton); this latter heterogeneity is likely explained by their investment and spe-

cialization in cotton production, making them less likely to switch out due to other

shocks during this time period. On the other hand, the random coefficient on the

constant is statistically insignificant.

The distribution of implied demand elasticities is plotted in Appendix Figure E2. On

average, farmers are equally sensitive to price and to yields: elasticities are 3.26 and

3.29, respectively.

5.2 Supply

Estimating counterfactual prices and yields under alternative regulatory regimes re-

quires fully specifying a model of conduct for seed-producing firms that optimally
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Table 2. Structural Demand Estimates

(1) (2) (3)

Seed price (’00 |) -0.043*** -0.049*** -0.420***

(0.011) (0.009) (0.031)
Physical yield (’00 kg/ha) 0.231*** 0.309*** 0.314***

(0.008) (0.007) (0.010)

Outside option log-profits-per-ha -0.732*** -0.495*** -0.247***

(0.046) (0.073) (0.085)
Time trend 0.059*** -0.003*** -0.002***

(0.011) (0.000) (0.000)

Plot size (’0 ha) × Price 0.029*** 0.029*** 0.026***

(0.005) (0.005) (0.005)
Plot size (’0 ha) × Yield -0.000 -0.000 0.028***

(0.005) (0.005) (0.005)
Plot size (’0 ha) × Time trend 0.004*** 0.004*** 0.004***

(0.000) (0.000) (0.000)

Random coefficient on constant 0.033 0.033 0.006
(0.075) (0.075) (0.028)

Number of micro-consumers 628,143
Number of markets 240

Market fixed effects ✓ ✓
Instrument variables for price ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of obser-
vation: household × plot. Data on choice, product characteristics, and plot size
(for cotton farmers) from Francis Kanoi Marketing Research’s Cotton Crop

Track. Data on profits and plot size (for non-cotton farmers) sampled with re-
placement from the Cost of Cultivation/Production Survey to match shares
from the Crop Production Statistics. Estimates are based on the conformant
likelihood estimator with exogeneity restrictions by Grieco et al. (2025). Robust
standard errors in parentheses. Markets are defined as district-year pairs. The
instrumental variables for prices included in Column (3) are the number of rival
hybrid varieties offered in the market and the number of own hybrid varieties
offered by a brand in the market. The estimates of their first stage are in Ap-
pendix Table E5. The sign of the coefficients on the outside-option parameters
(i.e., β1 and β2 in Equation 7) is flipped to reflect their effect on the utility of
inside goods.

set their prices and qualities.

Firms’ Profit Maximization. In line with our data construction assumptions, we

assume that brands are single-product firms at the market level and maximize total
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profits, Π.52 In an oligopoly, the problem of firm b in market m can be written as

max
pbm∈Pm

ybm∈R++

Πbm :=
(

pbm − 1{b ∈ Bt} rm − mcbm(ybm)
)
· Qbm( p⃗m, y⃗m)︸ ︷︷ ︸

operating profits

− FCbm(ybm)︸ ︷︷ ︸
fixed costs

(8)

where r is the value of the per-packet royalty or trait fees for Bt (paid by the firm to

to Monsanto), mc(·) is the marginal cost of producing a packet of seeds, and Q is the

number of packets sold.53 Fixed costs, FC(·), capture the expenses that a firm has

to sustain in order to achieve a certain level of yields through the development and

release of new seed varieties.54 The key difference between markets with and without

price controls is the set Pm. In markets without price controls, Pm = R++. In markets

with price controls, Pm = (0, P̆m], P̆ being the cap set by state governments.

Building on Fan (2013) and Barwick et al. (2024), we assume a linear specification of

the marginal cost function, such that

mcbm(ybm) = ω · ybm + ξb + κ · t1{b∈BT} + νmc
bm (9)

where ω is the slope of the marginal costs with regard to yields. We include brand

fixed effects ξb to control for time-invariant differences in productive efficiency across

companies and a linear time trend specific to Bt brands to capture potential cost

reductions due to learning and technological advances in breeding GE cotton. νmc is

an unobserved cost shock. Fixed costs are assumed to be non-linear in yields, so that

∂FCbm
∂ybm

= ϕ′ + ϕ′′ · ybm + νFC
bm (10)

where ϕ′ is the intercept of the slope of the fixed cost function, ϕ′′ is the second deriva-

tive or convexity with regard to yields, and νFC is a firm-market specific shock. The

latter parameterization reflects the notion that, as yields increase, the effort required

to raise them further may grow at an increasing rate.

The first order conditions (FOCs) of the unconstrained profit optimization problem

52 As noted by Ciliberto et al. (2019) for the case of US corn and soybeans, a “product” in the seed
industry is best understood as a “product line” that evolves over time, depending on the underlying
germplasm and the incorporation of GE traits: key dimensions of differentiation that are valued by
buyers. Appendix E.1 provides further details on how we define and aggregate products using our
survey data.

53 While licensing contracts for GE traits are typically confidential in other settings, requiring additional
assumptions to estimate trait fees (Moschini and Perry, 2024), we were able to obtain them as primary
data from company records. In India, trait fees for Bt cotton are set nationally, so they only vary by
market m, and not by Bt brand b ∈ Bt. They are equal to 0 for non-Bt brands.

54 Our model is static. In theory, firms are forward-looking and maximize the discounted sum of future
profits. We abstract from dynamic considerations and take the market environment as exogenous and
constant over our time horizon. Under this assumption, the profit objective in Equation 8 provides a
reduced-form approximation to the discounted objective. Accordingly, FC(·) should be treated as the
per-period cost of attaining yield y, rather than the outcome of an intertemporal R&D decision.
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each firm b solves in market m are:

[pbm] :
(

pbm − 1{b ∈ Bt} rm − mcbm(ybm)
)(

∂Qbm( p⃗m)

∂pbm

)
+ Qbm = 0 (11)

[ybm] :
(

pbm − 1{b ∈ Bt} rm − mcbm(ybm)
)(

∂Qbm (⃗ym)

∂ybm

)
︸ ︷︷ ︸

marginal revenue gain from changing yields

=
∂mcbm
∂ybm

Qbm +
∂FCbm
∂ybm︸ ︷︷ ︸

cost-side effect

(12)

= ω · Qbm + ϕ′ + ϕ′′ · ybm + νFC
bm

An important trade-off arises from a firm’s optimal choice of yields: farmers value

yields, but yields may be costly to provide. How costly? The ultimate goal of our

supply model is to quantitatively address this question.

Estimation Strategy and Results. The empirical objects of interest are ω, ϕ′, and

ϕ′′. In markets where firms are price-controlled, we cannot distinguish between con-

strained and unconstrained firms when they price at the cap.55 Therefore, we esti-

mate our supply-side parameters in unconstrained markets. We do so through the

following two-step procedure. First, we invert the Nash-Bertrand single-product firm

pricing FOC given demand estimates to recover marginal costs for each brand-market

pair. Second, we estimate the three supply-side parameters jointly by generalized

method of moments (GMM), using our model of marginal costs (Equation 9) and the

yield FOC (Equation 12) as moments.

Given that cost shocks are observable to the firm but not to the econometrician, we

instrument yields with two demand shifters: plot size, z, and outside option profits

per hectare, Π0. Firms have more incentives to provide yields in markets with larger

average plot sizes, since these farmers value yield relatively more. If plot sizes are

uncorrelated with supply shocks, this provides a valid instrument to estimate supply.

Similarly, but with an opposite sign, the profitability of outside option crops predicts

farm exit from cotton and thus lower overall demand for cotton seeds (Table 2).56

Intuitively, our estimation strategy leverages the covariation of prices and yields to

55 This empirical challenge is reflected in the data, where a small share of seeds are priced below the
|750 and |930 caps – for BG-I and BG-II cotton, respectively – in price-controlled states (Appendix
Figure A3). The fact that not all prices strictly adhere to the cap implies the potential existence of
unconstrained firms.

56 In line with this argument, we find a strong first stage (Appendix Table E6). The identifying assump-
tion for the second stage to be valid is that cost shocks are mean independent of the instruments,
Wsupply := (z, Π0); formally, E

[
νmc

∣∣Wsupply] = 0. The timing of seed manufacturing is key to ensur-
ing the validity of our supply instruments: seed firms set yields and incur production costs before the
actual realization of farmers’ input costs and output prices. Once these conditions are known, it is no
more expensive to sell seeds to larger farms or when other crops are more profitable. Moreover, the
set of farmers that act as “seed multipliers” is likely a selected group with larger plots: these farmers,
according to our demand estimates, are less sensitive to changes in the outside option.
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recover the variable cost of production. On the other hand, the observed choices of

yields across markets are informative of the curvature of fixed costs of production

with regard to yield.

Table 3 reports the supply estimates with and without instruments. The GMM esti-

mates using demand shifters in Column (3) are positive and statistically significant,

confirming that providing quality is costly to firms, both at the margin and as a fixed

cost investment. In contrast, the OLS estimates in Columns (1-2) potentially suffer of

endogeneity and appear biased toward zero, suggesting that unobserved cost shocks

and yields are indeed correlated. This could be due, e.g., to negative marginal cost

shocks, such as adverse weather conditions or input shortages, prompting firms to

reduce expenses on breeding for cost savings. On average, increasing yields by 100

kilograms per hectare costs firms an additional |43 per packet of seeds.

Using the GMM estimates, Appendix Figure E4 traces the slope of the fixed cost

function: while it is always costly to provide higher quality, such cost grows with the

level of yield, implying convex fixed costs in yields. As firms move toward the Indian

productivity frontier, it becomes more and more expensive to innovate and increase

productivity further. At the average level of yields, i.e., 1,100 kilograms per hectare,

increasing yield by 100 kilograms raises fixed costs by about |2.5 million.

As a final step, we project implied marginal costs onto yields, brand fixed effects,

and the Bt time trend to recover brand-year-specific marginal costs in constrained

markets. The full details of this final step can be found in Appendix E.3. Appendix

Figure E3 reports our estimates of marginal costs by type of brand. We recover

an average markup of 30%, which is in line with gross margins we obtained from

companies’ internal cost data. In addition, prices implied by our structural estimates

of marginal costs are strongly correlated with observed prices in the data (coefficient

of correlation of 0.90).

6 Welfare and Counterfactual Policy Analysis

The main goal of the structural analysis was to understand how the price-cap policy,

which was enacted by some Indian state governments in 2006, changed farmer wel-

fare compared to a benchmark scenario with no policy. With the model parameters of

demand and supply estimated, we can now answer this question. First, we can solve

for optimal prices and yields set by firms, recover counterfactual farmer choices and

obtain a corresponding measure of utility. Then, we can use the model to evaluate
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Table 3. Structural Supply Estimates

(1) (2) (3)
Estimation method: OLS Brand GMM

fixed effects

Marginal cost slope, ω -0.038 -0.015 0.434***
(0.030) (0.027) (0.097)

Fixed cost slope intercept , ϕ′ -55,129.6 -53,535.5 -12,442.6
(34,716.9) (33,628.0) (14,690.5)

Fixed cost convexity, ϕ′′ 11,269.5*** 10,962.1*** 3,359.5**
(3,805.9) (3,688.6) (1,326.6)

Number of observations 226

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of obser-
vation: brand × state × year. All regression specifications (in the column header)
include a linear Bt-specific time trend. Robust standard errors in parentheses. In
Column (3), we use a two-step GMM estimator with moment conditions from
Equations 9 and 12 and a heteroskedasticity-robust weight matrix. The instru-
mental variables – assumed to be orthogonal to the moment conditions – are plot
size, outside option log-profits-per-hectare, and their interaction. The estimates
of their first stage are in Appendix Table E6. Costs are in 100 Indian rupees (|),
while yields are in 100 kilograms per hectare. Data on the inside good from
Francis Kanoi Marketing Research’s Cotton Crop Track. Data on profits and
plot size (for non-cotton farmers) sampled with replacement from the Cost of

Cultivation/Production Survey to match shares from the Crop Production

Statistics.

alternative policies, such as subsidies, in terms of welfare impact and fiscal cost.

Set-up and Methodology. We start by considering a counterfactual scenario where

firms are able to freely price and compare it to the observed price caps. Counterfac-

tual prices and yields are estimated under two assumptions. The first assumption

is that, without the caps, equilibrium prices and yields are those arising from the

profit-maximization FOCs (Equations 11 and 12). Second, absent price controls, tech-

nology fees would not have been renegotiated between the technology provider, i.e.,

Monsanto, and the domestic seed firms. Therefore, we set trait fees back to |1,100 per

packet for all markets after 2006. To solve for optimal prices and yields, we use an

iterative quasi-Newton algorithm that jointly updates product attributes using FOC

violations and heavily penalizes pricing above the cap in regulated markets (detailed

in Appendix E.4).

The model provides a strong fit of the data under price caps. Appendix Figure E5

contrasts equilibrium outcomes from the structural model with the observed values

in the data among regulated markets. For both prices and yields, the correlation is

around 85%. Notably, our algorithm captures the mass of prices at the regulatory
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caps, |750 in 2009 and |930 in 2013. We further assess our model’s performance by

estimating ATT effects using structural outcomes rather than the actual data. Even if

the policy shock was not used for estimating the structural model and the sampling

of farmers and products differs from the one in Section 4, the model-based DiD

estimates in Appendix Table E7 align well with the reduced-form ones. As the price

cap is relaxed – holding royalty fees constant – we find that optimal prices increase,

suggesting that firms were indeed constrained in their pricing decisions under the

current policy; consequently, optimal yields also increase (Appendix Figure E6).

As a key welfare metric to assess the overall policy impact from these concomitant

changes, we compute farmer surplus, FS, in markets with price controls using the

logit formula,

FS(θ) =
1

α + θp(θ)
log

[
1 + ∑

b
exp

(
ub(p, y; θ)

)]
(13)

Prices and yields both affect utility and, hence, farmer surplus. The extent to which

they do is determined by the heterogeneous farmers’ preferences for price and yield

that we have estimated in Section 5.1. The extent to which firms react to the pol-

icy and adjust product attributes in equilibrium is mediated by the structure of the

market and the cost that firms face in order to provide yields from Section 5.2. Im-

portantly, our welfare metric is measured relative to the zero-utility outside option.57

We then integrate out over the empirical distribution of farmers’ preferences to obtain

aggregate farmer surplus,

FS =
∫

FS(θ) dF(θ)

Welfare Impact and Decomposition. Table 4 presents our welfare estimates, along

with the main equilibrium outcomes, under several counterfactual scenarios. Com-

pared to a benchmark scenario with no policy (Row 1), the observed price controls

(Row 2) increase farmer surplus by about |17.4 billion, or |584 per household. This

represents up to 30% of the average cost of cotton seeds and is more than double the

no-policy surplus. Consistent with heterogeneity in preferences and baseline adop-

tion, welfare gains are larger for poorer farmers (who are more price- than yield-

57 This is an imperfect measure of welfare. As discussed above, many farmers are likely not making
choices that are consistent with profit maximization, either due to behavioral biases or to effectively
binding constraints. Our consumer-based metric reflects a farmer’s “perceived surplus”, as inferred
from their revealed preferences, and is only determined by equilibrium changes within the seed mar-
ket. It excludes general equilibrium effects in related input markets (e.g., Bt-induced labor and pesti-
cide savings), which could amplify the welfare gains from cheaper seeds, nor in output markets, which
could reduce them (e.g., increased cotton supply depressing output prices and altering the profitabil-
ity of outside-option crops). Furthermore, we abstract from the potential health and environmental
benefits from reduced pesticide use as well as concerns about losses in crop biodiversity.
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sensitive and less likely to plant Bt cotton in the absence of the policy): the relative

change in farmer surplus under observed price controls is always positive but de-

clines monotonically with plot size (Appendix Figure E7a).58

Table 4. Welfare Estimates Under Counterfactual Policies

(1) (2) (3) (4) (5) (6) (7)
Equilibrium outcomes Farmers surplus Fiscal cost

Scenario ↓ Average Average Share of Share of Total Per Total
prices yields cotton Bt adoption household

1) Benchmark: no policy⇝ p⋆, rhigh, y⋆ 1,532 1,129 1.6% 39% 10B 362
2) Price controls: observed policy⇝ p ↓, rlow, y ↓ 712 1,068 14.5% 95.3% 27B 945

Welfare decomposition
3) Ignoring endogenous quality adjustments⇝ p ↓, rlow, y⋆ 712 1,129 20% 94.7% 35B 1,237
4) Only considering renegotiation of royalty fees⇝ p ⇃, rlow, y⋆ 960 1,129 8.6% 99.2% 20B 706

Benchmarks with reaction in upstream innovation
5) Release of herbicide-tolerant technology⇝ p⋆, rhigh, y⋆ · 1.21 1,532 1,332 3.7% 41.5% 14B 513
6) Development of pink-bollworm resistance⇝ p⋆, rhigh, y⋆ · 1.75 1,532 1,615 20.4% 54.9% 38B 1,294

Alternative policies (government-financed)
7) Linear farm subsidy⇝ (1 − τ) · psub↣ f , rhigh, ysub↣ f 712 1,144 20.4% 91.2% 35B 1,217 63B
8) Partial innovation firm subsidy⇝ psub↣j, rhigh, (1 + ψ) · ysub↣j 1,760 2,729 19.2% 88.5% 35B 1,115 36B
9) Full innovation firm subsidy 1,918 3,199 32.5% 93.5% 54B 1,847 63B

Notes: Equilibrium outcomes, p for prices and y for yields, are consistent with our structural model in Section 5 and estimated through the quasi-Newton algorithm described
in Appendix E.4. Share of Bt adoption is defined as the total market share of Bt brands with respect to the total market share of the inside good (i.e., cotton). ⋆ refers to
the equilibrium under the benchmark of no policy, ↓ under the observed policy of price controls, ⇃ under royalty cuts alone (i.e., without specific retail price caps), sub↣ f

under linear farm subsidy, and sub↣j under innovation firm subsidy. rhigh = 1, 100 are royalty fees with no price regulation, while rlow are those observed under regulation.
Farmer surplus is based on the logit formula in Equation 13; ‘Per household’ is equal to ‘per farmer’ surplus multiplied by the average number of seed packets purchased
in price-controlled markets. The government cost for the linear farm subsidy is calculated by: (i) multiplying a 54.9% subsidy rate by the market-level equilibrium price, the
market-level equilibrium share of cotton, and the total number of seed packets sold; (ii) summing across price-controlled markets. The ‘partial’ and ‘full’ innovation firm
subsidy are welfare-neutral and budget-neutral, respectively, compared to the linear farm subsidy. All monetary values are in nominal Indian rupees (|).

Ignoring endogenous quality adjustments would substantially overstate farmers’ wel-

fare under the policy. The naïve impact (i.e., assuming no change in yields, Row 3) is

about |25.3 billion, or |875 per household. The local innovation lost – due to the ob-

served re-optimization undertaken by domestic private firms (Row 2) – reduces this

naïve impact by 31%. Conversely, we notice that, had the quality drop been roughly

proportional to the price drop (i.e., had the elasticity of quality to price been around

one), the policy would have been welfare-neutral for farmers. What prevented a

proportional drop?

As discussed earlier, the policy under study resulted in a bundled treatment: (i)

state-level retail price caps and (ii) a nationwide renegotiation of Bt royalty fees, pre-

cipitated by the caps themselves. The model allows us to unbundle the contributions

of these two components. Row 4 shows that roughly two-thirds of the total price drop

– driving 41.1% of the associated farmer surplus increase – is explained by the royalty

cut, with the remaining third attributable to the retail ceiling. This distinction is criti-

cal to understanding both the policy’s feasibility and its long-term implications. The

initial cap was set at |750, well below the pre-policy royalty fees of |1,100, making it

58 This change includes farms that enter into cotton as a result of the policy, mirroring our reduced-form
evidence in Section 4.2. If we subset the sample to cotton growers in the benchmark scenario of no
policy, the result holds (Appendix Figure E7b).
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clear that downstream suppliers could not have kept operating under the mandated

price ceiling without an upstream concession. In other words, the viability of the

policy hinged on a de facto IP appropriation: without it, Bt products would have

been pulled from the market. This matters for welfare: part of the observed gains for

farmers reflects a transfer of resources from the GE technology provider, rather than

improved market efficiency. While the price-cap component compressed the margins

of downstream local seed firms, the royalty-cut component did not. Preserved mar-

gins and a surge in demand under the latter may have buffered local firms’ incentives

to reduce innovation, helping explain why the drop in quality was smaller than the

drop in prices.

6.1 Accounting for Reaction of Upstream Innovation

The reduction in royalty payments to Monsanto was central to the welfare gains ex-

perienced by Indian farmers. However, this may have come at a cost not captured

by our model: diminished incentives for upstream innovation and delayed release of

new technologies to the Indian market. In practice, we observe that global advance-

ments that became available elsewhere – most notably, Bt varieties with herbicide

tolerance – were not deployed to India during this period (see descriptive evidence

in Section 4.4). At the same time, domestic firms did not develop GE traits with

improved resistance to emerging pests, such as the PBW, against which existing Bt

traits had become increasingly ineffective (Tabashnik et al., 2013; Tabashnik and Car-

rière, 2019). Concerns over royalty reductions were prominent among technology

providers, as evident in Monsanto’s 10-K filings and in statements from managers of

competing biotechnology firms (Appendix Table A2 and A3, respectively).

How do our welfare estimates change if we assume that the stagnation in upstream

innovation was caused by price regulation? While we cannot credibly identify this

causal link, we draw on the agronomy and entomology literature to obtain reasonable

estimates of yield gains from “missing products” that never reached the Indian mar-

ket. We focus on two technological innovations: (i) stacking a herbicide-tolerant (HT)

trait onto Bt and (ii) incorporating genetic resistance to the PBW.59 We augment op-

timal yields in the benchmark scenario of no policy to account for these innovations

59 Given that no new genetic technologies have been released to India since 2009, no field trials of such
technologies are publicly available. For herbicide tolerance, we use the most recent assessment by
Gharde and Singh (2018), who quantifies an 18% average cotton yield loss from weeds in India, using
data from more than a thousand farmer field trials between 2003 and 2014. For PBW resistance, we
consider additional losses of 25%, based on roving field surveys of 83 villages and boll damage data
by Fand et al. (2019).

44



(Rows 5-6) and compare the resulting welfare to that from the price-control policy

(Row 2). Accounting for the release of an existing technology, such as HT cotton,

partially offsets increases in farmer surplus. Further accounting for the development

and introduction of a technological breakthrough, such as PBW-resistant cotton, turns

welfare impacts on farmers negative. While speculative, these counterfactuals illus-

trate how reduced upstream innovation could reverse the short-run welfare gains

from price regulation. On the other hand, in the lack of price intervention, the new

technologies would have diffused at a much lower rate.

6.2 Designing Alternative Policies:
Subsidizing Adoption or Innovation?

We conclude by comparing price controls to a set of policies aimed at mitigating the

trade-off between product affordability and technological innovation. To direct tech-

nological progress without resorting to price regulation, a government can subsidize

either technology users (i.e., farmers) or providers (seed-producing firms). We con-

sider two main alternative policies: (i) a linear subsidy to cotton farmers, perhaps

the most commonly used intervention to raise technology adoption in developing

countries, and (ii) targeted R&D grants to seed firms, a supply-side industrial policy

designed to strengthen private innovation incentives.60

Farm Input Subsidies. We insert a wedge between the price paid by farmers and

the price received by firms so that operating profits in Equation 8 become
(

pbm −
rm − mcbm(ybm)

)
· Qbm

(
(1 − τ) p⃗m, y⃗m

)
. We search over a grid of subsidy rates to find

the linear schedule that generates the average equilibrium price observed under price

controls. Using this subsidy rate, we calculate the corresponding budget cost for the

government under the assumption of no administrative or implementation costs.

By increasing firms’ profits and boosting demand for cotton seeds, the farm subsidy

fully offsets the reduction in yields observed under price controls (Table 4, Row 7).

The estimated increase in farmer surplus is large, reflecting the combined benefit

from cheaper seeds and stable yields. However, this policy imposes a substantial fis-

cal burden: achieving the same average price as under price regulation would require

a 54.9% linear subsidy. The implied budgetary cost for the government amounts to

60 We acknowledge that, when designing agricultural and innovation policies, governments
may respond to political economy – rather than budgetary and capacity – constraints
(Acemoglu and Robinson, 2013; Dercon, 2024). Our counterfactual policy analysis assumes that gov-
ernments have access to an unrestricted set of policy measures and aim to maximize farmers’ surplus,
instead of responding to political incentives or other competing objectives.
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4.4% of India’s nationwide provision for fertilizer subsidy (RBI, 2009, 2014), equiv-

alent to 15.2% of the portion allocated to price-controlled states or 175.2% of the

portion effectively accruing to cotton farmers (Praveen et al., 2017). The prohibitive

cost of farm input subsidies may help explain why price caps were the preferred

policy.

Firm Innovation Subsidies. While effective at restoring yields, and so increasing

farmer surplus, input subsidies were found to entail exceptionally large fiscal costs

given the sheer size of the farming population in India. Including administrative

costs for enforcement and verification, and potential risks of leakage or elite capture,

would make the fiscal bill even larger. This motivates a final alternative: subsidizing

the much smaller set of domestic seed-producing firms. Specifically, we consider

performance-based grants, designed to incentivize these firms to upgrade product

quality.

Pull incentives, such as prizes and advance market commitments, are especially ap-

pealing in settings like agriculture (Kremer and Zwane, 2005, 2006), where produc-

tivity is directly observable.61 Agronomic yield data from regulatory trials could be

readily used to inform targeting to high-performing firms, avoiding the information

and implementation challenges associated with targeting farmers. While farmer tar-

geting may respond to equity concerns, the planner’s objective in firm targeting is

clear: direct resources to the most productive innovators. That said, potential yields

from experimental stations should be treated with some caution, as they may miss

other dimensions of quality that are valued by smallholder farmers in real-life condi-

tions (Macours, 2019).

To search for the counterfactual grant, we compute the welfare effect of a set of

grants that differ in their budget cost (Appendix E.4). Within the structure of our

model, the grants are allocated in proportion to a firm’s yields (relative to competitors

in a market) and used to lower the slope of its fixed costs in Equation 10. With

the innovation budget fixed, the grant operates as a zero-sum tournament: in each

market, firms compete on quality to secure a larger allocation. We then simulate

prices and yields given this grant. In Row 8, we assume that the government chooses

the grant that, given this allocation rule, replicates the welfare effect of the farm

subsidy estimated above. This grant is equal to 56% of the farm-subsidy budget.

61 Pull programs are also appealing for other technological products with under-provision of innovation,
notably pharmaceuticals and vaccines in developing countries (Kremer and Glennerster, 2004; Kremer
and Williams, 2010).
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Consumer preference heterogeneity shapes the distributional incidence of the two

policy alternatives: the poorest smallholders are more likely to prefer price-reducing

input subsidies, whereas larger farmers favor yield-enhancing innovation grants (Ap-

pendix Figures E7c and E7d). Using the full farm-subsidy budget to fund R&D grants

delivers even larger welfare gains for farmers (Row 9). Rather than through cheaper

seeds, these welfare gains are achieved by increasing yields at a higher rate than

prices. This innovation policy drives technological progress in Indian cotton, while

delivering greater surplus per unit of public spending across the distribution of farms.

7 Conclusion

We study the technological and welfare trade-offs induced by price regulation in the

context of Indian agriculture. In 2006, three states imposed a maximum retail price on

cotton seeds embodying Bt, a genetic technology designed to enhance pest resistance

and so protect harvestable yield from biotic stress, while reducing costs of cultiva-

tion. We leverage this unique policy natural experiment to identify causal impacts on

technological adoption and innovation. We combine several sources of farmer-level

data and empirically show that the resulting reduction in farm-gate prices gener-

ated a rapid and lasting penetration of Bt seeds among cotton farmers. We further

provide evidence across agricultural inputs and output that the Bt technology had a

transformative impact on cotton farming in India.

We conjecture that, despite initially ensuring the affordability of the existing technol-

ogy and driving its virtually universal adoption among end-users, price regulation

can reduce the incentives for doing research and developing novel seed varieties

among technology providers over the long term. Maintaining a steady flow of in-

novation holds distinct significance within the context of agricultural production,

since technological advances in crop variety development are seldom global, require

location-specific adaptation, and become obsolete in the face of evolving environ-

mental forces, such as climate change and the emergence of new diseases, pests, and

weeds. In India, local adaptation of cotton varieties is performed by the private sector;

in much of Africa, the need may be even more acute given pervasive heterogeneity

and near-zero breeding capacity (Suri and Udry, 2022).

We examine the supply-side response by drawing from administrative data on seed

companies and newly assembled data on GE varieties. Our results provide sugges-

tive evidence that the increased volume of sales allowed firms to remain in the market

in the short term. Nonetheless, we provide both descriptive and causal evidence in-
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dicating reduced product introduction and distorted innovation, respectively, in the

long term: a couple of years after the policy, firms started releasing fewer seed vari-

eties, which exhibited lower agronomic yields in price-controlled states. The policy-

induced yield loss erases more than half of the productivity gains expected from

adopting the GE technology in those states.

A structural model of the cotton seed market allows us to assess the welfare impli-

cations of price and quality responses in equilibrium, and compare them to alter-

native policies. From a broader perspective, our findings highlight the importance

of endogenous supply responses and quality adjustment to evaluate the equilibrium

effects of public policies in technological markets. Neglecting this margin of adjust-

ment can lead researchers and policymakers to overestimate the long-term gains from

demand-driven market interventions, such as price regulation.

Our welfare analysis abstracts from several dimensions of agricultural technology

adoption and innovation. First, we do not consider equilibrium effects in comple-

mentary input markets, such as labor and pesticides. Second, we do not take into

account the role of intermediary suppliers of seeds, such as agro-dealers (e.g., Dillon

et al., 2025), nor do we allow for firm entry and exit decisions. Ours is a retrospec-

tive analysis on farmers: we do not model firms’ R&D and dynamic investments,

which would require either more comprehensive data on innovation inputs or ad-

ditional structure on firm conduct. Lastly, we abstract away from imitative and in-

tertemporal innovation spillovers across firms and markets (e.g., Jones and Summers,

2022). Despite these limitations, our empirical framework offers a stylized model

of product targeting to local ecologies, which is designed to capture the core trade-

off between affordability and innovation in the seed market. This trade-off is likely

relevant to a range of other industries, such as green energy, fintech, and pharmaceu-

ticals, where the development and widespread adoption of affordable innovations are

essential for economic development and well-being. Quantifying the importance of

these complementary forces and understanding the effects of price interventions in

non-agricultural markets offer promising directions for future research. ■
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A Descriptive Statistics

Figure A1. Average Seed Cotton Yields in India and in the World

Notes: Yields are defined as tonnes of harvested production (unginned) per hectare. Cotton production
refers to cotton lint (ginned), i.e., fiber that has not been carded or combed. Data from FAOSTAT (Food
and Agriculture Organization of the United Nations).
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Table A1. Price Structure of a Bt Cotton Seed Packet

Company A Company B
Item ↓ (for 2016) (for 2018)

Procurement costs

Procurement rate for contract farmers 330 285
Parent seeds 15 15

Sub-total 345 300

Overhead expenses

R&D 35 60
Delinting, grading, ginning outturn testing,

processing, and seed treatment 42 60
Insurance at ginning, storage, and processing 3 5
Refugia (non-Bt) seeds 20 20
Loading and transport 5 5
Storage 2 2
Loss on procurement due to low germination 5 5
Financial charges 15 15
Administrative expenses 57 57
Advertisement and promotion 10 65
Sales return 30 30
Seed discard 20

Sub-total 224 344

Trait fees
49 39

Margins

Agro-dealer 75 115
Company 107 44

Sub-total 182 159

Total = price 800 842

Notes: Internal cost data were obtained in May 2024 through personal communications
with market leaders in the Indian cotton seed industry.
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Figure A2. Trends in the National Sample

(a) Cotton Seed Costs

(b) Bt Cotton Adoption

Notes: Means estimates with 95 percent confidence intervals based on least-squares regressions
with standard errors clustered at the farmer level. Unit of observation: household × parcel ×
plot × season × year. Data from the Cost of Cultivation/Production Survey. The outcome in
panel (a) is measured in Indian rupees (|) per acre. The vertical dashed line signals the treatment
timing. “Price control” includes all interviewed households in states with price control acts, i.e.,
Andhra Pradesh, Gujarat, Maharashtra, and Telangana (formed in 2014).
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Figure A3. Distribution of Cotton Seed Prices by Treatment Exposure

Bt Cotton

(a) Price-Controlled States (b) Other States

Conventional Cotton

(c) Price-Controlled States (d) Other States

Notes: “Price-controlled states” in the left panels include all interviewed households in states with price
controls (i.e., Andhra Pradesh and Maharashtra). “Other states” in the right panels are Karnataka and
Tamil Nadu. “Pre” periods in gray are before the price control policy (i.e., 2002/2003 and 2004/2005).
“Post” periods in red or blue are after (i.e., 2006/2007 and 2008/2009). Unit of observation: household
× plot. Data from Kathage and Qaim (2012)’s panel survey. The outcome, in Indian rupees (|),
is rescaled to reflect the price for a 450-gram bag, the typical size of a hybrid cotton seed package
(enough to plant an acre of land) in India. Note that Bt cotton seed packets typically include an
additional 120 grams of non-Bt cotton seeds, intended to serve as refugia: this weight is excluded
from the reported price calculation. “BG-I” and “BG-II” in panel (a) refer to Bollgard 1 (Bt single-gene
Cry1Ac) and Bollgard 2 (double-gene Cry1Ac and Cry2Ab) cotton varieties, respectively.
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Figure A4. Nationwide Trends in Indian Cotton

(a) Total Seed Production (b) Total Lint Production

(c) Import/Export of Lint

Notes: Lint production and import/export refer to cotton lint (ginned), i.e.,
fiber that has not been carded or combed, while seed production is consid-
ered unginned. Data from FAOSTAT (Food and Agriculture Organization of
the United Nations).
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Figure A5. Evolution of Genetically Modified Crop Event Approvals by Country

(a) Cotton

(b) Maize (c) Soybean

Notes: Data from the GM Approval Database (scraped from https://www.isaaa.org/
gmapprovaldatabase/default.asp) of the International Service for the Acquisition of Agri-biotech
Applications. Each gray line represents an approving country: it starts in the year with the first GM
crop approval (e.g., 2002 for cotton in India) and ends with the latest year of GM crop approval (e.g.,
2009 for cotton in India).
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Figure A6. Evolution of Technology Royalties

Notes: Data from the Prowess database of the Centre for Monitoring Indian Economy. The black
line plots the yearly royalty fees for sub-licensing Bt genetic trait(s), as paid by domestic seed
firms to Mahyco Monsanto Biotech.
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Figure A7. Evolution of Seed Variety Approvals by Zone

(a) Number of Varieties Approved

(b) Number of Companies Approving at Least One Variety

Notes: Data from the Genetic Engineering Appraisal Committee of the Ministry of Environment,
Forest and Climate Change. The North zone includes the states of Haryana, Punjab, and Ra-
jasthan; the Central zone includes the states of Gujarat, Madhya Pradesh, Maharashtra, and
Odisha; the South zone includes the states of Andhra Pradesh, Karnataka, Tamil Nadu, and
Telangana (formed in 2014).
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Figure A8. Evolution of Applications to Conduct Field Trials by Zone

Notes: Data from the Genetic Engineering Appraisal Committee of the Ministry of Environment, Forest
and Climate Change. The North zone includes the states of Haryana, Punjab, and Rajasthan; the
Central zone includes the states of Gujarat, Madhya Pradesh, Maharashtra, and Odisha; the South
zone includes the states of Andhra Pradesh, Karnataka, Tamil Nadu, and Telangana (formed in 2014).

Figure A9. Evolution of Seed Varietal Age at the Farm Level

Notes: “Seed Varietal Age” is defined as the number of years elapsed since the official market release
of the seed variety planted in a certain plot. Data on the year of market release from the Genetic
Engineering Appraisal Committee of the Ministry of Environment, Forest and Climate Change. Data
on seed variety planted from ICRISAT’s Village Dynamics in South Asia. Sample: Bt cotton farmers.

x



Figure A10. Means of Lint Yields from Agronomic Trials

Notes: Means estimates with 95 percent confidence intervals based on least-squares regressions
with standard errors clustered at the company level. Unit of observation: seed variety × trial
location. Data digitized from the Bt reports of the All India Coordinated Research Project on

Cotton of the Indian Council of Agricultural Research. “Price control” includes all trial locations
in states with price controls (i.e., Andhra Pradesh, Gujarat, Maharashtra, and Telangana).
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Table A2. Excerpts from Monsanto’s 10-K Annual Reports

Year • Statement

2004 • “We experienced sales improvements in [...] cotton traits in the United States and India.” (p. 24)

•

“Fiscal year 2004 cotton trait revenues in India improved from the comparable period a year
ago primarily because of increased acreage planted with Bollgard cotton traits. In the prior year,
farmers realized the crop protection benefits of our cotton traits, which were approved in
calendar year 2002. As a result, more farmers began using or increased the acreage they
planted with Bollgard traits in 2004.” (p. 34)

2005 •
“Net sales increased [...] as a result of [...] higher cotton trait revenues in Australia and India.”
(p. 21)

•

“Sales of Bollgard traits in India improved in 2005 because of a significant increase in planted
trait acres, increased penetration and new cotton hybrids. Increased acreage and penetration
resulted from continued farmer experience and acceptance of our cotton traits.” (p. 35)

2006 •

“Mahyco Monsanto Biotech Ltd. (MMB), a joint venture of our subsidiary Monsanto Holdings
Private Limited and MAHYCO Seeds Limited, is currently defending complaints before the
Monopoly and Restrictive Trade Practice Commission in India (MRTP), relating to the fees it
charges on Bollgard technology. [...] On May 11, 2006, the MRTP concluded that MMB was in
violation of law by engaging in restrictive trade practices by charging unreasonable trait fees,
granted a temporary injunction and directed MMB not to charge Rupees 900 as a trait fee and
to set a reasonable trait fee. Appeal was taken to India’s Supreme Court. Pending
determination of any appeal, MMB has complied with the directions of the order. MMB has
also filed writs with the India Supreme Court challenging the state government orders.” (p. 19)

•

“Our India cotton business is currently operating under state governmental pricing directives
which have increased our collection risk. We will continue to carefully monitor our Indian
trade receivables in 2007.” (p. 43)

2007 •

“Our international traits businesses, in particular, will probably continue to face unpredictable
regulatory environments that may be highly politicized. We operate in volatile, and often
difficult, economic environments. Although we see growth potential in our India cotton
business with the ongoing conversion to new hybrids and Bollgard II, this business is currently
operating under state governmental pricing directives that we believe limit near-term earnings
growth.” (p. 42)

2014 •

“Growth in India’s cotton germplasm and traits business continues to be impacted by
government controlled pricing and uncertainties in the regulatory approval process for new
trait introductions.” (p. 33)

2016 • “Net sales decreased [...] in fiscal year 2016 compared to fiscal year 2015. (p. 19)

•

“The net sales decrease [...] in cotton seed and traits was primarily due to lower average net
selling price in India as a result of new government pricing policies. [...] Gross profit for cotton
seed and traits decreased $126 million, or 31 percent, compared to the 16 percent decrease in
net sales for cotton seed and traits primarily due to the effect on margins from the decline of
the India business as a result of new government regulations coupled with higher costs in the
United States.” (p. 25)

•
“India’s cotton germplasm and traits business could continue to be significantly impacted by
government policies, including controlled pricing and regulatory uncertainties, and we will
continue to evaluate our cotton business in India.” (p. 34)
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Table A3. Excerpts from Interviews of Biotechnology Providers (first panel) and
Other Press Coverage (second panel)

Source • Statement

‘India: Biotech Companies Say
Cotton Seed Price Cap Limit-
ing Research’, by Jacob P. Koshy,
Technology Networks, May 11,
2010

•

Indian biotechnology companies that manufacture genetically modified cotton seeds say they
are struggling to keep research activities afloat since the three top cotton-producing states –
Andhra Pradesh, Maharashtra and Gujarat – fixed the prices at which cotton seeds could be
sold to farmers four years ago. “I’ve spent over (Rs)25-30 crore in the last seven years on
research and regulatory approvals around our Bt (Bacillus thuringiensis) genes, but with this
price cap, I can’t negotiate appropriate licensing fees with seed companies and I can’t
competitively price my seeds. So, we are bleeding," said K.K. Narayanan, managing director of
Metahelix Life Sciences Pvt. Ltd, a Bangalore-based crop biotech firm. [...] In July 2009,
Metahelix received approval to commercially launch a class of Bt cotton seeds. This year, it was
planning to introduce a new class of Bt hybrids. But Narayanan said the price cap has forced
them to put the plan on hold. [...] ‘It’s becoming harder and harder to convince investors of the
viability of investing in new Bt seed technology in India, and that’s largely because of states
constantly meddling with the prices of cotton seeds,’ said Narayanan.”

Suresh and Rao (2009, p. 298) •

“Among Indian seed companies, a few companies are struggling to attain technological
capabilities [...]. The interference in the pricing of quality value-added hybrid seeds by state
governments is creating a negative impact on indigenous seed companies in their efforts [to
develop and commercialize biotech seeds]”, M. Ramasami, founder of Rasi Seeds

Pray and Nagarajan (2010, pp.
305–306) •

“During our interviews with multinational biotech firms in August 2010, it was clear they are
wary of bringing in new GM traits such as drought tolerance or doing any research on traits for
India-specific problems until the price-control situation is clarified. [...] Indian companies and
Indian branches of multinationals say that as a result of the Bt cotton seed price controls, they
are slowing down introduction of new technology, but it is too early to have any numbers to
substantiate this claim.”

“What’s preventing India from
achieving USD100 billion textile
exports by 2030”, by CD Mayee
and Bhagirath Choudhary, The
Economic Times, May 17, 2024

•

“By arbitrary fixing market price of Bt cotton seeds in favour of seed producer and thwarting
technology fee, it has stymied R&D companies to innovate and develop new and high-yielding
seed and biotech trait(s) for cotton sector in India. As a result, the cotton sector has not seen
any new technology including next generation BG-IIRRF cotton.

“Cotton: Entangled in a web
of double-edged MSPs”, by CD
Mayee and Bhagirath Choud-
hary, The Hindu Businessline,
May 27, 2024

•

“As a result, the cotton sector has not seen any new technology, pest such as pink bollworm
(PBW) has developed resistance to age-old Bt cotton, majority of tech related projects have been
discontinued, and no new investment in research and integrated resistance management (IRM)
in the country. The breeding of new varieties of cotton is in shamble with no improved genetic
and trait in the offing.”
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B Directed Innovation in Cotton Breeding
The pervasive heterogeneity in geo-climatic conditions that span the Indian landscape
requires seed development to be locally adapted. This is particularly true for cotton,
a field crop that faces a broad spectrum of pest and disease threats across the coun-
try and that is grown on various soil types and under varying practices, including
different irrigation systems and cropping sequences (Venugopalan et al., 2009; Blaise,
2021).

Historical Evolution of Cotton Varieties in India. Cotton (Gossypium species) has
been cultivated in India since ancient times, with the earliest evidences of cotton fab-
ric dating back to the Mohenjo-Daro and Harappa civilizations around 3,200 BCE
(Gulati and Turner, 1929).62 Throughout history, Indian cotton has been renowned
not only for its significant role in the global market but also for its exceptional diver-
sity. Witness to this, India is the only country that has cultivated all four domesticated
Gossypium species of the Malvaceae family: the Old World diploids Gossypium arboreum
and Gossypium herbaceum (Asian or desi cotton)63 as well as the New World tetraploids
Gossypium barbadense (Egyptian or Pima cotton) and Gossypium hirsutum (American or
Upland cotton).64 Moreover, the range of cotton produced in India includes various
fiber qualities, from short to extra-long staple, and micronaire values, from coarse to
fine. This diversity reflects the adaptation of cotton varieties to the country’s varied
growing conditions, agronomic practices, and market demands (Venugopalan et al.,
2013).

During the colonial period, only indigenous desi cotton was grown with minimal
external inputs and hardly any fertilizer application. This traditional practice was
dramatically altered within a decade when the American Revolution (1765-1783) dis-
rupted the supply of raw cotton fiber to the United Kingdom, forcing a shift toward
cultivating American cotton, whose medium staple length and high fiber strength
better suited industrial needs, arising from advancements in high-speed spinning
machines. The British textile industry urged the government to promote the cultiva-
tion of this cotton species in India, starting with the introduction of the “Bourbon”
cultivar from Malta and Mauritius in 1790. These efforts intensified in the early 1800s
with extensive trials to adapt American cotton varieties to Indian conditions and to
develop high-yielding strains (Sethi, 1960).

A further impetus for developing new cotton varieties came with World War I, which
reduced the availability of cotton for the Lancashire textile industry. This led to
the establishment of the Indian Central Cotton Committee (ICCC), which funded
various research and development programs, resulting in the release of improved
cotton cultivars with high yield potential (Sikka and Joshi, 1960). The ICCC was later
replaced by the All India Coordinated Cotton Improvement Program (AICCIP – now

62 For further historical accounts on cotton in India, see Santhanam and Hutchinson (1975), Santhanam
and Sundaram (1997), and Santhanam et al. (2016).

63 Regional desi cultivars are also known as Narasapur in Andhra Pradesh, Kala or Wagad cotton in
Gujarat, Jayadhar in Karnataka, among many.

64 Cotton is one of the earliest domesticated non-food crops. Archaeological evidence has revealed that
cotton was domesticated independently in both the Old World and the New World: Gossypium ar-
boreum in the Indus Valley of present-day Pakistan and India, Gossypium herbaceum in Arabia and
Syria, Gossypium barbadense in Mesoamerica, and Gossypium hirsutum in coastal Peru (Brubaker et al.,
1999; Zohary et al., 2012).
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AICRP), which was responsible for significant historical milestones in hybridization
for commercial cultivation, including the development of the extra-long staple cotton
“Suvin”, the world’s first intra-hirsutum cotton hybrid “H4” or “Sankar-4”, and the
world’s first inter-specific (Gossypium hirsutum × Gossypium barbadense) cotton hybrid
“Varalaxmi” (Basu, 1983; Basu and Paroda, 1995).65

Despite the introduction of American cotton by the British, the cultivation of short
and medium staple Asiatic cottons remained dominant prior to India’s independence
(Narayanan et al., 2014). Beginning in the 1950s, the share of American cotton rose
significantly with the “Grow More Cotton” campaign, which provided incentives for
farmers to apply chemical fertilizer to cotton, such as reduced prices and short-term
credit, and cotton extension schemes. This rise was largely explained by the fact
that American cotton hybrids were more responsive to fertilizer applications both at
planting and as top dressing. However, the excessive use of synthetic pyrethroids
in the 1990s generated insect pest resistance (Kranthi et al., 2001). As a main result,
multiple pesticide applications were required to control bollworm infestations: “spray
and pray”, as the saying of those days goes.66

The decisive shift in species composition in favor of American cotton was brought
about by the introduction and rapid adoption of Bt hybrids. By 2019, 97% of the
cotton area was under intra-hirsutum hybrids, leaving less than 3% of the area under
the Asiatic cotton varieties and confining Egyptian cotton to a limited area in South
India (Blaise et al., 2014). This recent trend indicates that nearly all of the spatial
variation in cotton cultivation and seed development today is driven by different
hybrid varieties, which are the focus of our study.

The Advent of Private-Sector Breeding. The introduction of Bt cotton marked a
significant turning point, not only for farmers’ agronomic practices, but also for the
focus of breeding programs. In this new context, private-sector breeding has come to
play a major role in advancing technological improvements to meet the diverse needs
of cotton farmers across the country.

The emergence of the private sector as a major contributor to investment in seed and
pesticide research in India is a phenomenon that dates back to the 1980s. According
to Murugkar et al. (2006), the expansion of private investment in cotton was a result
of technological learning through experimentation using public-bred varieties as well
as economic reforms that protected the discoveries (i.e., the new hybrids) made by
private firms. A key reform for seed developers was the enactment of the Protection
of Plant Varieties and Farmers’ Rights Act in 2001 (Agrawal, 2019). The major change
introduced by this law was that it allowed breeders to protect their developed vari-
eties, granting them exclusive rights to produce and sell their protected varieties for a

65 H4 was released by the celebrated cotton scientist Chandrakant T. Patel in 1970. Originating from the
research station in Surat, Gujarat, it quickly spread across Gujarat, Maharashtra, Madhya Pradesh,
Andhra Pradesh, and Karnataka. Inspired by the success of this hybrid, Bhimareddy Hanumareddy
Katarki developed Varalaxmi at Dharwad Agricultural University, Karnataka, in 1972. Varalaxmi
gained popularity for its superior fiber quality and was subsequently cultivated in Karnataka, Tamil
Nadu, Andhra Pradesh, and Maharashtra.

66 The over-reliance on insecticides and the associated evolution of resistance in insects and pests parallels
the history of cotton in the US. This situation ultimately necessitated alternative solutions, culminating
in the development and commercialization of genetically modified Bt cotton by Monsanto in the mid-
1990s (Razaq et al., 2019).
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specified amount of time. In order to be granted this protection, breeders must apply
and prove that their varieties are distinctive from others in the market, stable, and
novel.

Since then, private companies have largely taken the lead in hybrid development,
while the public sector has focused on varietal development (Suresh et al., 2014).67

Unlike a cotton “hybrid variety”, which is created by crossing two different parent
lines or varieties, a cotton “open-pollinated variety” (OPV) is a pure inbred line. Be-
cause it is self-pollinated and can reproduce true-to-type, farmers can re-use the seeds
of an OPV for three to four seasons without any significant loss of vigor. This natural
reusability, coupled with the longer time required to develop crop OPVs compared
to hybrids, contributes to rendering varieties a less lucrative investment for private
firms in this context.68

Evidence of Geography-Specific Seed Development. Faced with the many sources
of heterogeneity in growing conditions mentioned above and a rising market size,
cotton seed-producing companies in India tend to target their breeding programs to
specific zones and segments, such as irrigated versus rain-fed areas, water storage
versus no storage, and resistance to specific pests like whitefly versus pink bollworm.
Despite the benefits of this segmentation, insights from qualitative interviews suggest
that companies generally avoid focusing on too niche segments to ensure sufficient
and consistent market demand.

We confirm this observation using our administrative data on seed companies and
Bt varieties. Our descriptive analysis begins by documenting that cotton seed devel-
opment is indeed geography-specific. Since the introduction of Bt hybrids, 55% of
the varieties were approved for only one zone (Northern, Central or Southern), 38.8%
were approved for two zones (typically, Central and Southern, which share important
similarities in terms of cotton growing practices, such as being mostly rain-fed), and
only 6.2% were approved for all three zones.

Interestingly, seed companies headquartered in a state s innovate more within their
own state zone z(s). We establish this second stylized fact by constructing a rectangu-
larized dataset at the company-zone level, which records the number of seed varieties
approved each year from 2002 to 2015. We then regress this count on an indicator
variable that equals one if the company’s zone matches the product’s zone and zero
otherwise, using a Poisson pseudo-maximum likelihood estimation procedure. The
estimates in Table B1 show that a company headquartered in a certain zone is 21%
more likely to release a seed variety in that same zone. This relationship is robust
to the inclusion of year, company, and seed variety fixed effects. It is even stronger
for Central and South zones, with companies being 47% and 37% more likely, respec-
tively, to release a seed variety in their home zone. Conversely, the relationship does
not hold for the North zone, which has a relatively smaller market and where fewer
companies are headquartered.

From 2012 onward, the responsibility for approving new seed varieties for Bt cotton
shifted to state governments. Therefore, we can replicate the previous results on

67 Also see Kolady et al. (2012) on crops other than cotton.
68 Given that OPVs became marginal in the context of the Indian cotton market and are supplied only

by public institutions, our empirical analysis focuses almost exclusively on hybrids. Throughout the
paper, references to cotton “varieties” generally serve as shorthand for “hybrid varieties”.
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Table B1. Company Location and Target Zone of Seed Varieties Released

(1) (2) (3) (4) (5) (6)

1
{

Company zone = Product zone
}

0.213** 0.213** 0.214**

(0.100) (0.100) (0.092)
× 1

{
zone = North

}
-0.143
(0.120)

× 1
{

zone = Central
}

0.477***

(0.167)
× 1

{
zone = South

}
0.370**

(0.182)

Number of observations 1,764 1,764 1,764 1,764 1,764 1,764
Number of companies 49 49 49 49 49 49

Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Company fixed effects ✓ ✓ ✓ ✓ ✓
Product zone fixed effects ✓ ✓ ✓ ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: company × zone
× year. The outcome variable is the number of seed varieties approved. Data on seed varieties from the
Genetic Engineering Appraisal Committee of the Ministry of Environment, Forest and Climate Change. Data
on company headquarters from the Prowess database of the Centre for Monitoring Indian Economy. All
regressions are Poisson pseudo-maximum likelihood regressions with multi-way fixed effects, as indicated in
the last three rows of the table. Therefore, the coefficients approximate the percentage change in the count of
the outcome variable. Standard errors clustered at the company level in parentheses.

this subset of approvals, using a rectangularized dataset at the company-state level.
Table B2 confirms the importance of geography-specific innovation in this context:
according to the most conservative specification in Column (4), controlling for year,
company, and product-state fixed effects, seed companies headquartered in a state s
are 31% more likely to release a seed variety in that same s.
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Table B2. Company Location and Target Zone of Seed Varieties Released

(1) (2) (3) (4)

1
{

Company state = Product state
}

0.732*** 0.691*** 0.577*** 0.308***

(0.142) (0.124) (0.100) (0.118)

Number of observations 1,786 1,786 1,786 1,786
Number of companies 43 43 43 43

Year fixed effects ✓ ✓ ✓ ✓
Company fixed effects ✓ ✓ ✓
Product zone fixed effects ✓ ✓
Product state fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation:
company × state × year. The outcome variable is the number of seed varieties approved.
Data on seed varieties from the Genetic Engineering Appraisal Committee of the Ministry
of Environment, Forest and Climate Change. Data on company headquarters from the
Prowess database of the Centre for Monitoring Indian Economy. All regressions are Poisson
pseudo-maximum likelihood regressions with multi-way fixed effects, as indicated in the
last four rows of the table. Therefore, the coefficients approximate the percentage change
in the count of the outcome variable. Standard errors clustered at the company level in
parentheses.

As a result of this differential research effort and, possibly, of complementary invest-
ments in distribution and marketing, seed sales appear to be geography-specific too.
Using a similar strategy as above, we rectangularize our four-state panel survey data
at the farmer-company level. Then, we identify farmers who purchase their seeds
from companies headquartered in the same state and regress the probability of pur-
chasing a seed on this indicator variable using a linear probability model. Living
in the same state as a certain company significantly increases the probability of a
household purchasing a Bt cotton seed from such a company by 42% (Table B3 – top
panel). A similar relationship is observed when focusing on non-Bt, conventional
cotton seeds (Table B3 – bottom panel), confirming that this preference is a general
phenomenon and is likely not due to the introduction of Bt.
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Table B3. Company Location and Farmer Seed Choice

(1) (2) (3) (4)

Bt cotton seeds

1
{

Farm state = Company state
}

0.027*** 0.033*** 0.031*** 0.031***

(0.005) (0.006) (0.007) (0.007)

Sample mean of comparison group 0.065 0.065 0.065 0.065

Number of observations 13,482 13,482 13,482 13,482
Number of households 476 476 476 476
Number of companies 14 14 14 14

Conventional cotton seeds

1
{

Farm state = Company state
}

0.037*** 0.042*** 0.047*** 0.047***

(0.009) (0.011) (0.008) (0.008)

Sample mean of comparison group 0.065 0.065 0.065 0.065

Number of observations 7,228 7,228 7,228 7,228
Number of households 356 356 356 356
Number of companies 13 13 13 13

Survey wave fixed effects ✓ ✓ ✓ ✓
Farm state fixed effects ✓ ✓ ✓
Company state fixed effects ✓ ✓
Company fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation:
farmer × company × survey wave. Data on seed choice from Kathage and Qaim (2012)’s
panel survey. Data on company headquarters from the Prowess database of the Centre
for Monitoring Indian Economy. All regressions are least squares with fixed effects, as
indicated in the last four rows of the table. Standard errors clustered at the farmer level
in parentheses. The outcome is a dummy variable, so that coefficients can be interpreted
in terms of percentage points.
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C Difference-in-Differences Estimates

C.1 Cluster-Robust Inference

Our empirical setting features panel data where observations can be naturally
grouped into a certain number, G, of mutually independent clusters, g. Therefore,
we consider statistical inference with regression model errors that are uncorrelated
across clusters but arbitrarily correlated within clusters. Specifically, we assume
that errors may be correlated across different time periods for a given unit while
remaining uncorrelated for different units.

The importance of clustering is particularly salient in difference-in-differences studies
with panel data (e.g., with state-by-year observations), where both the regressor of in-
terest (e.g., a state-level policy) and the error term can be highly correlated across time
(Bertrand et al., 2004). This issue is commonly addressed through a “cluster-robust”
variance estimator, which averages across independent clusters (states in the example
above) and provides a consistent estimate of the variance matrix as G → ∞.69 Such
an estimator produces consistent standard errors and test statistics without imposing
strong assumptions about the parametric structure of within-cluster error correlation.
Yet the underlying asymptotic approximations require that the number of indepen-
dent clusters sampled from an infinite super-population goes to infinity, rather than
just the number of observations. In scenarios with few clusters, conventional cluster-
robust standard errors tend to have poor properties, greatly overstate estimator pre-
cision, and over-reject true null hypotheses.

C.1.1 Determining the Appropriate Level of Clustering

Despite the need to control for clustered errors having been well established in the
theoretical literature and appreciated in applied work, the structure of the clusters
is often not known to the econometrician. For instance, in our empirical analysis of
technological demand (Section 4.1), we observe individuals in different geographical
locations, such as villages, districts, and states, and need to assume at what level the
clustering occurs.

Some rules of thumb have become popular due to their wide applicability to the
case of nested clusters, e.g., villages within a state (see, e.g., Roth et al., 2023 for the
case of difference-in-differences). However, the decision on what to cluster over is
not obvious a priori and can affect the validity of inference (MacKinnon et al., 2023).
The fundamental trade-off boils down to the following: while clustering at a narrow
level (e.g., household or village) can result in over-rejection, clustering too coarsely
(e.g., state) can lead to complications arising from having few treated clusters, such as
under-coverage of confidence intervals and tests with low power.70 The latter issues
arise because the researcher assumes less information than they actually have.

69 A “robust” estimator, which naturally extends to balanced clusters, was initially derived by White
(1980). It was then generalized to unbalanced clustered data and models with cluster-specific fixed
effects Liang and Zeger (1986) and Arellano (1987), respectively. See Hansen and Lee (2019) for a
recent attempt to provide a foundation to the large-sample theory of estimation and inference with
clustered samples.

70 These issues can be quite severe as the number of clusters becomes small, as demonstrated by MacK-
innon and Webb (2017, 2018). Simulations in Abadie et al. (2023) show that cluster-robust covariance
estimators based on excessively coarse clusters can be too large even in settings with many clusters.
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To assess the validity of our chosen clusters, we use the modified randomization test
developed by Cai (2023). This test particularly fits our application, given that it relies
on asymptotics that take the number of coarse clusters (state, in our case) as fixed.71

We define state as the coarse level of clustering in our data, villages and households
as finer sub-clusters, and test them in our event-study regression in Equation 1.

Table C1 reports worst-case p-values from tests involving pairs of these three nested
clusters for the two main outcomes of interest in Section 4.1: technology adoption
and yields. For adoption, clustering at the village level is found to be appropriate at
the 5 percent level, as the tests in Columns (1-2) reject the null hypotheses that the
finer level of clustering, i.e., household, is correct against the alternative that coarser
levels of clustering are better, while the test in Column (3) fails to reject that village
clustering is more appropriate than state clustering. A similar conclusion is reached
for yields: the high p-values suggest that state may be an unnecessarily coarse level,
as finer clusters (i.e., households and villages) are approximately independent.

Table C1. Tests of Levels of Clustering

(1) (2) (3) (4) (5) (6)
Outcome: Technology Adoption Yields

Null hypothesis: i → v i → s v → s i → v i → s v → s

0.003 0.004 0.504 0.963 0.600 0.351

Notes: p-values from worst-case randomization tests as in Cai (2023). The no-
tation in the second column headers, e.g., i → v, indicates that sub-cluster i is
tested against coarse cluster v, where i, v, and s index household, village, and
state, respectively. The null hypothesis is that sub-clusters i are uncorrelated
within cluster v and, therefore, provide a more appropriate level of clustering.
The regression specification is the one in Column (5) of Appendix Table C4
for technology adoption and Column (5) of Appendix Table C11 for yields.
The treatment definition is the one from the first panel, i.e., using state-level
price controls as treatment.

71 The two other alternatives to test for the level of clustering (i.e., Ibragimov and Müller, 2016 and
MacKinnon et al., 2023) both rely on an asymptotic framework with many clusters. Therefore, the test
we implement is likely to be more conservative.
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C.2 Auxiliary Results and Robustness

Table C2. Main Treatment Effects on Demand Side – Cluster-Robust Inference

(1) (2) (3) (4) (5)

Cotton seed prices

Price control × Post-2005 -0.460 -0.380 -0.378 -0.361 -0.399
(0.106)*** (0.084)*** (0.084)*** (0.083)*** (0.093)***

[0.155]* [0.076]** [0.083]** [0.088]** [0.092]**

p-values from small-sample adjustments
Bell and McCaffrey (2002) 0.0769 0.0314 0.0381 0.0729 0.0474
Pustejovsky and Tipton (2018) 0.1271 0.0715 0.0809 0.1267 0.0997

p-values from wild-cluster bootstrap
with Rademacher weights <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
with Webb (2023) weights 0.0580 0.0540 0.0540 0.0520 0.0730

p-values from cluster-robust t-statistic randomization inference <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

p-values from alternative non-standard inference methods
Bertrand et al. (2004)¬ 0.0099 0.0001 <0.0001 <0.0001
Donald and Lang (2007) <0.0001 <0.0001 0.0007 0.0007
Ferman and Pinto (2019)¬ <0.0001 <0.0001 <0.0001 <0.0001

Number of observations 1,651 1,651 1,651 1,649 1,538
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.524 0.571 0.572 0.685 0.663

Bt cotton adoption

Price control × Post-2005 0.145 0.141 0.159 0.160 0.230
(0.051)*** (0.051)*** (0.053)*** (0.054)*** (0.068)***

[0.071] [0.069] [0.064]* [0.048]** [0.047]**

p-values from small-sample adjustments
Bell and McCaffrey (2002) 0.2885 0.2931 0.2266 0.1460 0.0543
Pustejovsky and Tipton (2018) 0.3359 0.3413 0.2796 0.2044 0.1099

p-values from wild-cluster bootstrap
with Rademacher weights <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
with Webb (2023) weights 0.0540 0.0670 0.0560 0.0590 0.0610

p-values from cluster-robust t-statistic randomization inference <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

p-values from alternative non-standard inference methods
Bertrand et al. (2004)¬ <0.0001 <0.0001 <0.0001 <0.0001
Donald and Lang (2007) 0.0155 0.0082 0.0031 <0.0001
Ferman and Pinto (2019)¬ 0.0200 <0.0001 <0.0001 <0.0001

Number of observations 1,681 1,681 1,681 1,679 1,577
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.321 0.322 0.343 0.355 0.282

Wave fixed effects ✓ ✓¬ ✓¬ ✓¬ ✓¬

State fixed effects ✓ ✓ ✓ ✓
District fixed effects ✓ ✓ ✓
Village fixed effects ✓ ✓
Household fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household × plot × survey wave. Data from Kathage
and Qaim (2012)’s panel survey. All regressions are least squares, as in Equation 1, with fixed effects, as indicated in the last four rows of
the table, where, instead of interacting a dummy variable for each survey wave with the treatment, we pool all the waves after 2005 into
Post. Non-standard inference methods tagged with the ¬ superscript do not include wave fixed effects because of their aggregation procedure.
Standard errors clustered at the village level in parentheses and clustered at the state level in brackets. All p-values below the estimate are for
the case of state-level clustering.
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Table C3. Treatment Effects on Cotton Seed Prices

(1) (2) (3) (4) (5)

State-level price control

Price control (2002-2003) 0.077 0.034 0.034 0.035 0.031
(0.083) (0.076) (0.078) (0.076) (0.091)
[0.043] [0.016] [0.015] [0.011]* [0.010]*

Price control (2006-2007) -0.412 -0.370 -0.370 -0.357 -0.390
(0.129)*** (0.118)*** (0.118)*** (0.113)*** (0.129)***

[0.126]** [0.087]** [0.093]** [0.091]** [0.090]**

Price control (2008-2009) -0.432 -0.357 -0.353 -0.333 -0.380
(0.104)*** (0.087)*** (0.087)*** (0.085)*** (0.092)***

[0.152]* [0.069]** [0.076]** [0.089]** [0.100]**

Number of observations 1,649 1,649 1,649 1,647 1,536
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.524 0.570 0.571 0.684 0.662

Including spillover villages in the treatment group

Price control (2002-2003) 0.081 0.029 0.031 0.024 -0.009
(0.092) (0.088) (0.089) (0.085) (0.102)
[0.042] [0.021] [0.019] [0.008]* [0.028]

Price control (2006-2007) -0.519 -0.460 -0.462 -0.460 -0.482
(0.132)*** (0.116)*** (0.116)*** (0.109)*** (0.134)***

[0.125]** [0.079]** [0.087]** [0.082]** [0.076]***

Price control (2008-2009) -0.513 -0.413 -0.409 -0.399 -0.436
(0.110)*** (0.089)*** (0.088)*** (0.083)*** (0.096)***

[0.178]* [0.077]** [0.085]** [0.104]** [0.104]**

Number of observations 1,649 1,649 1,649 1,647 1,536
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.525 0.574 0.574 0.688 0.665

Dropping spillover villages from the estimation sample

Price control (2002-2003) 0.083 0.032 0.033 0.024 -0.000
(0.094) (0.089) (0.090) (0.086) (0.103)
[0.040] [0.020] [0.018] [0.012] [0.019]

Price control (2006-2007) -0.532 -0.471 -0.474 -0.465 -0.481
(0.135)*** (0.118)*** (0.119)*** (0.110)*** (0.136)***

[0.131]** [0.091]** [0.099]** [0.090]** [0.083]**

Price control (2008-2009) -0.534 -0.433 -0.429 -0.413 -0.442
(0.110)*** (0.088)*** (0.087)*** (0.082)*** (0.096)***

[0.169]* [0.074]*** [0.084]** [0.099]** [0.104]**

Number of observations 1,502 1,502 1,502 1,500 1,412
Number of villages 58 58 58 56 55
Number of states 4 4 4 4 4
Adjusted R-squared 0.524 0.572 0.572 0.691 0.662

Bt fixed effects ✓ ✓ ✓ ✓ ✓
Wave fixed effects ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓
District fixed effects ✓ ✓ ✓
Village fixed effects ✓ ✓
Household fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household
× plot × survey wave. Data from Kathage and Qaim (2012)’s panel survey. All regressions are least
squares, as in Equation 1, with fixed effects, as indicated in the last four rows of the table. Standard
errors clustered at the village level in parentheses and clustered at the state level in brackets. The
comparison period is 2004-2005, i.e., the pre-event survey wave. The outcome is expressed in natural
logarithm, so that coefficients approximate percentage changes from that period. Treatment defini-
tion in the panel header. A graphical representation of the top-panel main estimates is displayed in
Figure 1.
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Table C4. Treatment Effects on Bt Cotton Adoption

(1) (2) (3) (4) (5)

State-level price control

Price control (2002-2003) 0.068 0.070 0.062 0.075 0.070
(0.071) (0.071) (0.071) (0.074) (0.091)
[0.051] [0.050] [0.046] [0.055] [0.053]

Price control (2006-2007) 0.210 0.209 0.220 0.226 0.287
(0.061)*** (0.061)*** (0.062)*** (0.064)*** (0.080)***

[0.040]** [0.038]** [0.036]*** [0.022]*** [0.026]***

Price control (2008-2009) 0.148 0.145 0.160 0.165 0.234
(0.069)** (0.070)** (0.072)** (0.075)** (0.095)**

[0.075] [0.074] [0.069] [0.056]* [0.051]**

Sample mean of outcome variable in comparison period 0.355 0.355 0.355 0.355 0.358
Number of observations 1,681 1,681 1,681 1,679 1,577
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.321 0.322 0.343 0.356 0.281

Including spillover villages in the treatment group

Price control (2002-2003) 0.069 0.073 0.061 0.055 0.021
(0.084) (0.083) (0.083) (0.086) (0.103)
[0.061] [0.060] [0.053] [0.052] [0.041]

Price control (2006-2007) 0.266 0.264 0.278 0.279 0.292
(0.062)*** (0.063)*** (0.064)*** (0.067)*** (0.088)***

[0.037]*** [0.034]*** [0.031]*** [0.019]*** [0.040]***

Price control (2008-2009) 0.203 0.199 0.218 0.219 0.257
(0.078)** (0.081)** (0.083)** (0.087)** (0.112)**

[0.071]* [0.068]* [0.063]** [0.048]** [0.049]**

Sample mean of outcome variable in comparison period 0.355 0.355 0.355 0.355 0.358
Number of observations 1,681 1,681 1,681 1,679 1,577
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.324 0.325 0.346 0.359 0.282

Dropping spillover villages from the estimation sample

Price control (2002-2003) 0.076 0.079 0.067 0.069 0.041
(0.085) (0.083) (0.084) (0.087) (0.103)
[0.065] [0.065] [0.057] [0.061] [0.049]

Price control (2006-2007) 0.271 0.268 0.283 0.286 0.308
(0.064)*** (0.065)*** (0.066)*** (0.068)*** (0.089)***

[0.034]*** [0.031]*** [0.028]*** [0.012]*** [0.025]***

Price control (2008-2009) 0.202 0.197 0.217 0.221 0.265
(0.080)** (0.082)** (0.085)** (0.088)** (0.113)**

[0.075]* [0.073]* [0.068]** [0.053]** [0.049]**

Sample mean of outcome variable in comparison period 0.353 0.353 0.353 0.353 0.353
Number of observations 1,534 1,534 1,534 1,532 1,453
Number of villages 58 58 58 56 55
Number of states 4 4 4 4 4
Adjusted R-squared 0.317 0.318 0.340 0.354 0.280

Wave fixed effects ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓
District fixed effects ✓ ✓ ✓
Village fixed effects ✓ ✓
Household fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household × plot × survey wave. Data from
Kathage and Qaim (2012)’s panel survey. All regressions are least squares, as in Equation 1, with fixed effects, as indicated in the last
four rows of the table. Standard errors clustered at the village level in parentheses and clustered at the state level in brackets. The
comparison period is 2004-2005, i.e., the pre-event survey wave. Treatment definition in the panel header. A graphical representation
of the top-panel main estimates is displayed in Figure 2.
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Table C5. Treatment Effects on Seed Usage at the Intensive Margin

(1) (2) (3) (4) (5)

State-level price control

Price control (2002-2003) 5.6 38.8 36.3 45.6 25.5
(73.1) (62.8) (63.9) (64.5) (67.0)
[74.9] [49.2] [50.3] [42.0] [37.9]

Price control (2006-2007) 211.6 180.4 179.5 184.5 144.5
(84.4)** (74.2)** (72.7)** (78.0)** (82.8)*

[143.3] [111.3] [112.2] [137.5] [145.6]
Price control (2008-2009) 278.4 242.9 235.3 260.1 233.3

(59.7)*** (55.8)*** (55.4)*** (79.4)*** (92.7)**

[84.1]** [45.0]** [46.6]** [115.9] [154.8]

Sample mean of outcome variable in comparison period 605.468 605.468 605.468 605.468 592.708
Number of observations 1,652 1,652 1,652 1,650 1,538
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.068 0.153 0.172 0.374 0.413

Including spillover villages in the treatment group

Price control (2002-2003) -129.1 -86.8 -88.5 -71.1 -55.0
(68.5)* (57.9) (58.3) (55.8) (62.9)
[46.9]* [48.9] [49.1] [57.8] [45.7]

Price control (2006-2007) 183.9 141.0 142.2 158.4 149.7
(104.6)* (86.4) (86.5) (97.4) (98.5)
[215.9] [176.5] [177.7] [207.8] [175.8]

Price control (2008-2009) 236.0 187.0 180.8 226.8 249.4
(62.6)*** (55.1)*** (55.2)*** (96.3)** (110.5)**

[148.3] [104.8] [106.4] [189.3] [193.9]

Sample mean of outcome variable in comparison period 605.468 605.468 605.468 605.468 592.708
Number of observations 1,652 1,652 1,652 1,650 1,538
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.060 0.159 0.172 0.375 0.419

Dropping spillover villages from the estimation sample

Price control (2002-2003) -90.7 -49.1 -51.1 -33.2 -30.8
(67.0) (56.2) (56.8) (53.2) (62.1)
[44.6] [28.8] [30.3] [29.3] [31.6]

Price control (2006-2007) 211.1 166.9 168.5 182.0 155.2
(103.3)** (85.2)* (85.2)* (96.7)* (98.5)
[195.1] [156.7] [157.4] [189.9] [172.3]

Price control (2008-2009) 272.8 223.6 217.1 259.3 260.3
(58.8)*** (51.1)*** (51.2)*** (94.8)*** (110.0)**

[117.3] [72.1]* [74.0]* [163.3] [185.7]

Sample mean of outcome variable in comparison period 580.181 580.181 580.181 580.181 576.519
Number of observations 1,506 1,506 1,506 1,504 1,415
Number of villages 58 58 58 56 55
Number of states 4 4 4 4 4
Adjusted R-squared 0.077 0.176 0.191 0.420 0.431

Wave fixed effects ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓
District fixed effects ✓ ✓ ✓
Village fixed effects ✓ ✓
Household fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household × plot × survey wave. Data
from Kathage and Qaim (2012)’s panel survey. The outcome is measured in grams per acre. All regressions are least squares,
as in Equation 1, with fixed effects, as indicated in the last four rows of the table. Standard errors clustered at the village level
in parentheses and clustered at the state level in brackets. The comparison period is 2004-2005, i.e., the pre-event survey wave.
Treatment definition in the panel header.
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Table C6. Treatment Effects on Insecticide Expenditures

(1) (2) (3) (4) (5)

State-level price control

Price control (2002-2003) -220.2 -264.0 -288.7 -310.5 -362.4
(262.1) (255.1) (240.3) (234.4) (304.2)
[520.7] [535.7] [516.1] [515.5] [523.6]

Price control (2006-2007) -219.3 -237.3 -258.0 -198.7 -350.7
(225.7) (226.2) (228.0) (245.0) (269.9)
[375.3] [340.8] [333.3] [319.9] [337.4]

Price control (2008-2009) -1,018.8 -981.6 -1,001.1 -905.7 -1,092.5
(232.2)*** (229.2)*** (228.9)*** (229.2)*** (298.7)***

[697.1] [679.1] [675.6] [670.7] [657.7]

Sample mean of outcome variable in comparison period 2115.1 2115.1 2115.1 2115.1 2127.4
Number of observations 1,681 1,681 1,681 1,679 1,577
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.141 0.263 0.328 0.368 0.396

Including spillover villages in the treatment group

Price control (2002-2003) -650.0 -668.5 -670.2 -593.1 -573.4
(210.0)*** (209.5)*** (205.4)*** (205.1)*** (256.5)**

[432.8] [439.1] [424.5] [440.8] [467.3]

Price control (2006-2007) -640.1 -671.6 -656.2 -632.7 -679.6
(191.0)*** (188.2)*** (192.0)*** (203.5)*** (236.0)***

[269.4]* [265.4]* [266.0]* [252.0]* [282.6]*

Price control (2008-2009) -898.5 -881.2 -848.7 -799.3 -901.5
(221.4)*** (225.9)*** (225.4)*** (219.2)*** (273.2)***

[699.0] [697.4] [695.8] [655.7] [668.9]

Sample mean of outcome variable in comparison period 2115.1 2115.1 2115.1 2115.1 2127.4
Number of observations 1,681 1,681 1,681 1,679 1,577
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.178 0.297 0.325 0.365 0.391

Dropping spillover villages from the estimation sample

Price control (2002-2003) -564.5 -586.5 -588.8 -549.1 -548.4
(221.8)** (220.0)*** (214.9)*** (214.3)** (259.5)**

[502.2] [505.0] [488.8] [500.4] [513.2]

Price control (2006-2007) -553.2 -594.6 -576.2 -540.9 -609.9
(201.7)*** (199.4)*** (203.2)*** (216.6)** (243.6)**

[323.8] [314.1] [315.2] [296.9] [317.7]
Price control (2008-2009) -1,022.9 -1,008.9 -971.0 -905.5 -1,017.9

(234.1)*** (236.5)*** (237.2)*** (233.4)*** (276.1)***

[708.8] [702.6] [705.0] [687.0] [676.4]

Sample mean of outcome variable in comparison period 2039.6 2039.6 2039.6 2039.6 2059.3
Number of observations 1,534 1,534 1,534 1,532 1,453
Number of villages 58 58 58 56 55
Number of states 4 4 4 4 4
Adjusted R-squared 0.189 0.318 0.347 0.388 0.420

Wave fixed effects ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓
District fixed effects ✓ ✓ ✓
Village fixed effects ✓ ✓
Household fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household × plot × survey wave. Data from
Kathage and Qaim (2012)’s panel survey. The outcome is measured in Indian rupees (|). All regressions are least squares, as in Equation
1, with fixed effects, as indicated in the last four rows of the table. Standard errors clustered at the village level in parentheses and
clustered at the state level in brackets. The comparison period is 2004-2005, i.e., the pre-event survey wave. Treatment definition in the
panel header.
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Table C7. Treatment Effects on Insecticide Use Against the Bollworm

(1) (2) (3) (4) (5)

State-level price control

Price control (2002-2003) -0.133 -0.131 -0.132 -0.131 -0.101
(0.062)** (0.062)** (0.064)** (0.067)* (0.079)
[0.103] [0.101] [0.101] [0.078] [0.077]

Price control (2006-2007) 0.066 0.078 0.067 0.084 0.096
(0.094) (0.091) (0.091) (0.090) (0.104)
[0.117] [0.106] [0.101] [0.089] [0.092]

Price control (2008-2009) -0.326 -0.298 -0.298 -0.279 -0.240
(0.103)*** (0.097)*** (0.092)*** (0.092)*** (0.114)**

[0.084]** [0.067]** [0.062]** [0.046]*** [0.047]**

Sample mean of outcome variable in comparison period 0.836 0.836 0.836 0.839 0.843
Number of observations 1,385 1,385 1,385 1,382 1,261
Number of villages 61 61 61 58 57
Number of states 4 4 4 4 4
Adjusted R-squared 0.151 0.181 0.243 0.270 0.292

Including spillover villages in the treatment group

Price control (2002-2003) -0.166 -0.168 -0.173 -0.148 -0.123
(0.077)** (0.077)** (0.078)** (0.079)* (0.093)
[0.119] [0.118] [0.116] [0.095] [0.088]

Price control (2006-2007) 0.059 0.069 0.054 0.074 0.069
(0.097) (0.094) (0.095) (0.093) (0.106)
[0.117] [0.109] [0.102] [0.085] [0.087]

Price control (2008-2009) -0.202 -0.181 -0.191 -0.181 -0.150
(0.121) (0.116) (0.112)* (0.112) (0.128)
[0.153] [0.139] [0.131] [0.106] [0.092]

Sample mean of outcome variable in comparison period 0.836 0.836 0.836 0.839 0.843
Number of observations 1,385 1,385 1,385 1,382 1,261
Number of villages 61 61 61 58 57
Number of states 4 4 4 4 4
Adjusted R-squared 0.157 0.192 0.230 0.259 0.279

Dropping spillover villages from the estimation sample

Price control (2002-2003) -0.167 -0.167 -0.181 -0.155 -0.125
(0.078)** (0.078)** (0.079)** (0.079)* (0.093)
[0.119] [0.119] [0.114] [0.090] [0.087]

Price control (2006-2007) 0.070 0.080 0.059 0.084 0.085
(0.099) (0.096) (0.097) (0.095) (0.109)
[0.129] [0.120] [0.112] [0.096] [0.097]

Price control (2008-2009) -0.256 -0.233 -0.253 -0.230 -0.190
(0.120)** (0.115)** (0.112)** (0.112)** (0.128)
[0.107]* [0.094]* [0.085]* [0.062]** [0.059]**

Sample mean of outcome variable in comparison period 0.824 0.824 0.824 0.826 0.830
Number of observations 1,256 1,256 1,256 1,253 1,158
Number of villages 56 56 56 53 53
Number of states 4 4 4 4 4
Adjusted R-squared 0.165 0.190 0.232 0.259 0.290

Wave fixed effects ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓
District fixed effects ✓ ✓ ✓
Village fixed effects ✓ ✓
Household fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household × plot × survey wave. Data from
Kathage and Qaim (2012)’s panel survey. All regressions are least squares, as in Equation 1, with fixed effects, as indicated in the last
four rows of the table. Standard errors clustered at the village level in parentheses and clustered at the state level in brackets. The
comparison period is 2004-2005, i.e., the pre-event survey wave. Treatment definition in the panel header.
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Figure C1. Effects on Hired Labor Hours

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares regres-
sions as in Equation 1: year and season fixed effects are included in all the models; additional
fixed effects are indicated in the legend below the graph. Standard errors clustered at the village
level. Unit of observation: household × parcel × plot × season × year. Data from the Cost of

Cultivation/Production Survey. The outcome is expressed in natural logarithm, so that coef-
ficients approximate percentage changes from the pre-treatment comparison period (i.e., 2005).
The vertical red line signals the treatment timing. Estimates pooling pre- and post-treatment
periods are in Appendix Table C8.
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Table C8. Treatment Effects on Labor Hours – Pooled Estimates

(1) (2) (3) (4)

Total Labor

Price Control × Post-2005 -0.153 -0.133 -0.137 -0.143
(0.032)*** (0.031)*** (0.031)*** (0.028)***

[0.168] [0.182] [0.181] [0.193]

Number of observations 24,542 24,542 24,542 24,541
Number of villages 655 655 655 655
Number of states 10 10 10 10
Adjusted R-squared 0.042 0.110 0.150 0.244

Household Labor

Price Control × Post-2005 -0.044 -0.018 0.014 0.013
(0.042) (0.041) (0.040) (0.040)
[0.117] [0.113] [0.127] [0.125]

Number of observations 24,306 24,306 24,306 24,305
Number of villages 655 655 655 655
Number of states 10 10 10 10
Adjusted R-squared 0.026 0.168 0.227 0.230

Hired Labor

Price Control × Post-2005 -0.410 -0.342 -0.387 -0.386
(0.077)*** (0.074)*** (0.072)*** (0.064)***

[0.316] [0.300] [0.290] [0.311]

Number of observations 23,742 23,742 23,742 23,741
Number of villages 655 655 655 655
Number of states 10 10 10 10
Adjusted R-squared 0.097 0.197 0.217 0.349

Season fixed effects ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓
Agro-ecological zone fixed effects ✓ ✓
Farm size fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household
× parcel × plot × year. Data from the Cost of Cultivation/Production Survey. All regressions
are least squares, as in Equation 1, with fixed effects, as indicated in the last four rows of the table,
where, instead of interacting a dummy variable for each year with the treatment, we pool all
the periods after 2005 into Post. Standard errors clustered at the village level in parentheses
and clustered at the state level in brackets. The outcome is expressed in natural logarithm, so
that coefficients approximate percentage changes from the pre-treatment comparison periods (i.e.,
2000-2005). A graphical representation of the main dynamic estimates is displayed in Appendix
Figure C1.
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Table C9. Treatment Effects on Labor Expenses per Acre – Pooled Estimates

(1) (2) (3) (4)

Price Control × Post-2005 -0.332 -0.373 -0.415 -0.413
(0.075)*** (0.073)*** (0.072)*** (0.064)***

[0.250] [0.235] [0.229] [0.248]

Number of observations 23,763 23,763 23,763 23,762
Number of villages 655 655 655 655
Number of states 10 10 10 10
Adjusted R-squared 0.247 0.319 0.338 0.450

Season fixed effects ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓
Agro-ecological zone fixed effects ✓ ✓
Farm size fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household
× parcel × plot × year. Data from the Cost of Cultivation/Production Survey. All regressions
are least squares, as in Equation 1, with fixed effects, as indicated in the last four rows of the
table, where, instead of interacting a dummy variable for each year with the treatment, we pool
all the periods after 2005 into Post. Standard errors clustered at the village level in parentheses
and clustered at the state level in brackets. The outcome is expressed in natural logarithm, so that
coefficients approximate percentage changes from the pre-treatment comparison periods (i.e., 2000-
2005).
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Table C10. Treatment Effects on Cotton Costs Per Acre – Pooled Estimates

(1) (2) (3) (4)

Seeds

Price control × Post-2005 -0.736 -0.833 -0.830 -0.838
(0.045)*** (0.046)*** (0.045)*** (0.042)***

[0.233]** [0.247]*** [0.257]** [0.272]**

Number of observations 24,539 24,539 24,539 24,538
Number of villages 655 655 655 655
Number of states 10 10 10 10
Adjusted R-squared 0.335 0.378 0.415 0.472

Total

Price control × Post-2005 -0.118 -0.231 -0.235 -0.242
(0.033)*** (0.032)*** (0.031)*** (0.028)***

[0.135] [0.143] [0.146] [0.159]

Number of observations 24,560 24,560 24,560 24,559
Number of villages 655 655 655 655
Number of states 10 10 10 10
Adjusted R-squared 0.343 0.400 0.433 0.506

Season fixed effects ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓
Agro-ecological zone fixed effects ✓ ✓
Farm size fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household ×
parcel × plot × year. Data from the Cost of Cultivation/Production Survey. All regressions are
least squares, as in Equation 1, with fixed effects, as indicated in the last five rows of the table, where,
instead of interacting a dummy variable for each year with the treatment, we pool all the periods
after 2005 into Post. Standard errors clustered at the village level in parentheses and clustered
at the state level in brackets. The outcome is expressed in natural logarithm, so that coefficients
approximate percentage changes from the pre-treatment comparison periods (i.e., 2000-2005). ‘Other
farm controls’ are cultivated area and total value of capital (all logged). A graphical representation
of the main dynamic estimates is displayed in Figure 3.
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Table C11. Treatment Effects on Farm-Level Cotton Yields

(1) (2) (3) (4) (5)

State-level price control

Price control (2002-2003) -37.5 -43.1 -51.8 16.4 56.6
(84.9) (86.0) (80.4) (72.9) (73.4)

[104.5] [108.2] [107.1] [112.2] [129.1]

Price control (2006-2007) 191.8 192.0 191.1 202.4 254.8
(54.6)*** (53.2)*** (51.2)*** (49.5)*** (62.1)***

[21.7]*** [28.4]*** [35.5]** [32.9]*** [29.2]***

Price control (2008-2009) -22.8 -13.9 -17.6 -19.4 1.3
(59.6) (61.2) (60.9) (57.5) (75.1)
[37.7] [33.2] [39.2] [38.6] [37.7]

Number of observations 1,655 1,655 1,655 1,653 1,542
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.114 0.136 0.263 0.367 0.457

Including spillover villages in the treatment group

Price control (2002-2003) 101.7 107.6 103.0 106.6 79.1
(73.7) (71.1) (70.9) (67.3) (76.5)

[208.7] [209.2] [207.3] [169.2] [157.2]

Price control (2006-2007) 226.5 218.6 229.8 228.3 271.0
(46.1)*** (46.9)*** (44.9)*** (47.3)*** (60.7)***

[33.6]*** [27.3]*** [31.5]*** [34.5]*** [35.6]***

Price control (2008-2009) -24.4 -28.3 -20.4 -22.8 -20.4
(63.5) (67.0) (68.3) (66.4) (87.6)
[33.4] [35.9] [42.0] [43.1] [42.6]

Number of observations 1,655 1,655 1,655 1,653 1,542
Number of villages 63 63 63 61 60
Number of states 4 4 4 4 4
Adjusted R-squared 0.147 0.217 0.263 0.368 0.457

Dropping spillover villages from the estimation sample

Price control (2002-2003) 58.5 62.2 57.7 84.7 77.4
(71.7) (70.6) (70.4) (68.5) (78.1)

[177.8] [176.6] [175.3] [155.9] [158.6]

Price control (2006-2007) 235.5 223.8 236.1 238.8 284.3
(48.7)*** (50.2)*** (47.6)*** (50.1)*** (61.9)***

[26.6]*** [23.1]*** [27.9]*** [28.3]*** [24.3]***

Price control (2008-2009) -24.5 -29.4 -21.4 -24.8 -19.7
(66.2) (69.8) (70.7) (69.2) (89.1)
[35.3] [38.1] [45.2] [44.9] [44.1]

Number of observations 1,508 1,508 1,508 1,506 1,418
Number of villages 58 58 58 56 55
Number of states 4 4 4 4 4
Adjusted R-squared 0.177 0.204 0.262 0.326 0.403

Wave fixed effects ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓
District fixed effects ✓ ✓ ✓
Village fixed effects ✓ ✓
Household fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation:
household × plot × survey wave. Data from Kathage and Qaim (2012)’s panel survey. All
regressions are least squares, as in Equation 1, with fixed effects, as indicated in the last
five rows of the table. Standard errors clustered at the village level in parentheses and
clustered at the state level in brackets. The outcome is expressed in kilograms per hectare.
The comparison period is 2004-2005, i.e., the pre-event survey wave. Treatment definition in
the panel header. A graphical representation of the top-panel main estimates is displayed in
Figure 4.
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Table C12. Treatment Effects on Cotton Crop Production Statistics – Pooled
Estimates

(1) (2) (3)

Cotton acreage

Price control × Post (2006-2008) 0.470 0.302 0.476
(0.225)** (0.183) (0.121)***

[0.343] [0.191] [0.199]**

Price control × Post (2009-2012) 0.491 0.503 0.781
(0.212)** (0.208)** (0.142)***

[0.295] [0.299] [0.223]***

Price control × Post (2013-2015) -0.139 -0.283 0.455
(0.288) (0.262) (0.218)**

[0.674] [0.649] [0.279]

Number of observations 3,398 3,398 3,378
Number of villages 250 250 230
Number of states 11 11 10
Adjusted R-squared 0.239 0.299 0.898

Production

Price control × Post (2006-2008) 0.370 0.338 0.540
(0.236) (0.181)* (0.127)***

[0.363] [0.159]* [0.209]**

Price control × Post (2009-2012) 0.462 0.498 0.685
(0.220)** (0.206)** (0.146)***

[0.333] [0.320] [0.241]**

Price control × Post (2013-2015) 0.045 -0.116 0.343
(0.273) (0.248) (0.222)
[0.618] [0.530] [0.310]

Number of observations 3,277 3,277 3,256
Number of villages 243 243 222
Number of states 11 11 10
Adjusted R-squared 0.226 0.337 0.879

Production per acre

Price control × Post (2006-2008) 0.172 0.182 0.173
(0.077)** (0.059)*** (0.058)***

[0.263] [0.203] [0.201]
Price control × Post (2009-2012) -0.077 -0.080 -0.064

(0.054) (0.053) (0.049)
[0.138] [0.131] [0.138]

Price control × Post (2013-2015) -0.175 -0.168 -0.147
(0.056)*** (0.057)*** (0.060)**

[0.124] [0.142] [0.153]

Number of observations 3,277 3,277 3,256
Number of villages 243 243 222
Number of states 11 11 10
Adjusted R-squared 0.166 0.468 0.574

Season fixed effects ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓
State fixed effects ✓ ✓
District fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of ob-
servation: district × year. Data from the Crop Production Statistics. Sample:
cotton-growing states. All regressions are least squares, as in Equation 2, with
fixed effects (indicated in the last four rows of the table) and standard errors
clustered at the company level (in parentheses), where, instead of interacting
a dummy variable for each year with the treatment, we pool the periods after
2005 into three Post time groups. Standard errors clustered at the village level in
parentheses and clustered at the state level in brackets. The outcome is expressed
in natural logarithm, so that coefficients approximate percentage changes from
the pre-treatment comparison periods (i.e., 2000-2005). A graphical representa-
tion of the main estimates in the first and second panels is displayed in Figure 5a
and 5b, respectively. xxxiii



Table C13. Heterogeneous Treatment Effects on Cotton Crop Production Statistics

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Outcome: Cotton acreage Production Production per acre

Below first tercile

Price control × Post-2005 -0.063 -0.093 0.378 0.180 0.123 0.395 0.064 0.050 0.066
(0.238) (0.218) (0.140)*** (0.240) (0.210) (0.154)** (0.050) (0.050) (0.048)
[0.371] [0.348] [0.139]** [0.333] [0.277] [0.190]* [0.104] [0.118] [0.124]

Price control × Post-2005 × Low cotton suitability 0.799 0.759 0.773 0.024 0.126 0.311 -0.608 -0.528 -0.504
(0.412)* (0.386)* (0.527) (0.418) (0.380) (0.551) (0.088)*** (0.086)*** (0.084)***

[0.459] [0.350]* [0.177]*** [0.420] [0.278] [0.253] [0.080]*** [0.076]*** [0.078]***

Number of observations 3,217 3,217 3,199 3,096 3,096 3,077 3,096 3,096 3,077
Number of districts 239 239 221 232 232 213 232 232 213
Number of states 11 11 10 11 11 10 11 11 10
Adjusted R-squared 0.320 0.372 0.901 0.304 0.417 0.883 0.175 0.477 0.574

Below first quartile

Price control × Post-2005 -0.073 -0.057 0.427 0.117 0.128 0.419 0.018 0.027 0.042
(0.228) (0.206) (0.135)*** (0.227) (0.196) (0.144)*** (0.049) (0.049) (0.047)
[0.390] [0.364] [0.119]*** [0.367] [0.292] [0.145]** [0.111] [0.134] [0.147]

Price control × Post-2005 × Low cotton suitability 1.261 0.909 1.016 0.458 0.249 0.564 -0.603 -0.565 -0.514
(0.528)** (0.551) (0.794) (0.549) (0.549) (0.830) (0.100)*** (0.099)*** (0.102)***

[0.435]** [0.392]** [0.263]*** [0.437] [0.309] [0.329] [0.101]*** [0.133]*** [0.163]**

Number of observations 3,217 3,217 3,199 3,096 3,096 3,077 3,096 3,096 3,077
Number of districts 239 239 221 232 232 213 232 232 213
Number of states 11 11 10 11 11 10 11 11 10
Adjusted R-squared 0.303 0.374 0.901 0.283 0.411 0.883 0.177 0.476 0.574

Season fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓ ✓ ✓
District fixed effects ✓ ✓ ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: district × season × year. Data on cotton acreage and output from the Crop Production

Statistics; data on potential yields from the Global Agro-Ecological Zoning database, version 4, of the Food and Agriculture Organization of the United Nations. Sample:
cotton-growing states. All regressions are least squares, as in Equation 1, with fixed effects, as indicated in the last four rows of the table, where, instead of interacting a
dummy variable for each year with the treatment, we pool all the periods after 2005 into Post. Standard errors clustered at the district level in parentheses and clustered at the
state level in brackets. The outcome is expressed in natural logarithm, so that coefficients approximate percentage changes from the pre-treatment comparison periods (i.e.,
2000-2005). ‘Low cotton suitability’ is equal to one if the agro-climatic potential yield for cotton in the time period 1981-2010 with an available water content of 200 mm/m
under irrigation conditions and high input level is below the sample statistics specified in the panel header.
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Figure C2. Effects on Probability of Cultivating Cotton

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares regres-
sions as in Equation 1: year and season fixed effects are included in all the models; additional
fixed effects are indicated in the legend below the graph. Standard errors clustered at the vil-
lage level. Unit of observation: household × season × year. Data from the Cost of Cultiva-
tion/Production Survey. The outcome is a dummy variable, so that coefficients can be inter-
preted in terms of percentage points. The vertical red line signals the treatment timing. Estimates
pooling pre- and post-treatment periods are in Appendix Table C14.
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Table C14. Treatment Effects on Cotton Farming – Pooled Estimates

(1) (2) (3) (4)

Probability of cultivating cotton (0/1)

Price control × Post-2005 0.048 0.034 0.034 0.034
(0.006)*** (0.005)*** (0.005)*** (0.005)***

[0.037] [0.035] [0.035] [0.035]

Sample mean of outcome variable in comparison period 0.138 0.138 0.138 0.138

Number of observations 114,390 114,390 114,390 114,390
Number of villages 655 655 655 655
Number of states 10 10 10 10
Adjusted R-squared 0.163 0.203 0.301 0.302

Area cultivated with cotton (logged)

Price control × Post-2005 0.079 0.026 0.023 0.023
(0.037)** (0.038) (0.038) (0.032)
[0.117] [0.111] [0.108] [0.130]

Number of observations 16,431 16,431 16,431 16,431
Number of villages 655 655 655 655
Number of states 10 10 10 10
Adjusted R-squared 0.031 0.075 0.114 0.435

Season fixed effects ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓
Agro-ecological zone fixed effects ✓ ✓
Farm size fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household × parcel × plot × year.
Data from the Cost of Cultivation/Production Survey. All regressions are least squares, as in Equation 1, with fixed
effects (indicated in the last six rows of the table) and standard errors clustered at the household level (in parentheses),
where, instead of interacting a dummy variable for each year with the treatment, we pool all the periods after 2005
into Post. The outcomes are expressed as follows: ‘Probability of cultivating cotton’ is a binary variable, while ‘Area
cultivated with cotton’ is in natural logarithm Therefore, coefficients can be interpreted in terms of percentage points or
percentage change from the pre-treatment comparison periods (i.e., 2000-2005), respectively. A graphical representation
of the main dynamic estimates is displayed in Figure C2.
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Table C15. Treatment Effects on Probability of Cultivating Cotton – Panel Survey
Sample

(1) (2) (3) (4) (5)

State-level price control

Price control (2002-2003) -0.052 -0.049 -0.047 -0.050 -0.044
(0.032) (0.032) (0.032) (0.032) (0.032)
[0.038] [0.036] [0.037] [0.036] [0.039]

Price control (2006-2007) 0.221 0.221 0.221 0.212 0.226
(0.080)*** (0.080)*** (0.080)*** (0.080)** (0.078)***

[0.048]** [0.049]** [0.049]** [0.046]** [0.043]**

Price control (2008-2009) 0.016 0.026 0.042 0.077 0.118
(0.044) (0.043) (0.047) (0.049) (0.050)**

[0.032] [0.028] [0.030] [0.025]* [0.023]**

Sample mean of outcome variable in comparison period 0.956 0.956 0.956 0.956 0.956
Number of observations 1,190 1,190 1,190 1,189 1,174
Number of villages 58 58 58 57 56
Number of states 4 4 4 4 4
Adjusted R-squared 0.141 0.155 0.172 0.244 0.219

Including spillover villages in the treatment group

Price control (2002-2003) -0.069 -0.066 -0.063 -0.062 -0.065
(0.036)* (0.036)* (0.037)* (0.036)* (0.036)*

[0.036] [0.038] [0.039] [0.039] [0.036]

Price control (2006-2007) 0.175 0.175 0.176 0.169 0.178
(0.080)** (0.081)** (0.080)** (0.080)** (0.078)**

[0.090] [0.091] [0.091] [0.086] [0.085]
Price control (2008-2009) 0.015 0.025 0.043 0.066 0.103

(0.048) (0.049) (0.053) (0.053) (0.054)*

[0.032] [0.026] [0.029] [0.028] [0.030]**

Sample mean of outcome variable in comparison period 0.956 0.956 0.956 0.956 0.956
Number of observations 1,190 1,190 1,190 1,189 1,174
Number of villages 58 58 58 57 56
Number of states 4 4 4 4 4
Adjusted R-squared 0.126 0.142 0.160 0.231 0.204

Dropping spillover villages from the estimation sample

Price control (2002-2003) -0.067 -0.066 -0.064 -0.063 -0.062
(0.037)* (0.037)* (0.037)* (0.037)* (0.037)*

[0.038] [0.038] [0.039] [0.039] [0.039]

Price control (2006-2007) 0.201 0.202 0.202 0.194 0.205
(0.076)** (0.076)** (0.075)*** (0.076)** (0.074)***

[0.066]* [0.067]* [0.067]* [0.063]* [0.060]**

Price control (2008-2009) 0.015 0.028 0.046 0.073 0.113
(0.049) (0.049) (0.053) (0.052) (0.053)**

[0.033] [0.028] [0.031] [0.026]* [0.024]**

Sample mean of outcome variable in comparison period 0.953 0.953 0.953 0.953 0.953
Number of observations 1,115 1,115 1,115 1,114 1,110
Number of villages 54 54 54 53 53
Number of states 4 4 4 4 4
Adjusted R-squared 0.129 0.144 0.164 0.226 0.213

Wave fixed effects ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓
District fixed effects ✓ ✓ ✓
Village fixed effects ✓ ✓
Household fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household × survey wave. Data from
Kathage and Qaim (2012)’s panel survey. Sample: households interviewed in Wave 1 (2002-2003). All regressions are least squares,
as in Equation 1, with fixed effects, as indicated in the last five rows of the table. Standard errors clustered at the village level in
parentheses and clustered at the state level in brackets. The comparison period is 2004-2005, i.e., the pre-event survey wave. Treatment
definition in the panel header.
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Table C16. Treatment Effects on Cotton Area – Panel Survey Sample

(1) (2) (3) (4) (5)

State-level price control

Price control (2002-2003) -0.125 -0.121 -0.079 -0.063 -0.083
(0.094) (0.089) (0.090) (0.089) (0.084)
[0.141] [0.141] [0.143] [0.140] [0.134]

Price control (2006-2007) -0.114 -0.059 -0.103 -0.059 -0.055
(0.119) (0.108) (0.108) (0.110) (0.104)
[0.181] [0.164] [0.165] [0.170] [0.144]

Price control (2008-2009) -0.134 -0.077 -0.132 -0.021 0.031
(0.133) (0.115) (0.114) (0.126) (0.125)
[0.124] [0.152] [0.163] [0.174] [0.142]

Sample mean of outcome variable in comparison period 1.485 1.485 1.485 1.485 1.485
Number of observations 1,112 1,112 1,112 1,108 1,088
Number of villages 58 58 58 54 53
Number of states 4 4 4 4 4
Adjusted R-squared 0.045 0.143 0.213 0.322 0.604

Including spillover villages in the treatment group

Price control (2002-2003) -0.058 -0.089 -0.067 -0.054 -0.125
(0.092) (0.091) (0.097) (0.096) (0.085)
[0.133] [0.127] [0.131] [0.129] [0.122]

Price control (2006-2007) -0.111 -0.035 -0.064 -0.038 -0.076
(0.126) (0.113) (0.113) (0.115) (0.108)
[0.175] [0.158] [0.157] [0.158] [0.135]

Price control (2008-2009) -0.149 -0.063 -0.096 0.008 0.035
(0.147) (0.127) (0.122) (0.138) (0.139)
[0.113] [0.148] [0.155] [0.172] [0.152]

Sample mean of outcome variable in comparison period 1.485 1.485 1.485 1.485 1.485
Number of observations 1,112 1,112 1,112 1,108 1,088
Number of villages 58 58 58 54 53
Number of states 4 4 4 4 4
Adjusted R-squared 0.070 0.155 0.212 0.322 0.605

Dropping spillover villages from the estimation sample

Price control (2002-2003) -0.080 -0.097 -0.076 -0.061 -0.118
(0.094) (0.095) (0.100) (0.099) (0.088)
[0.141] [0.141] [0.144] [0.141] [0.134]

Price control (2006-2007) -0.118 -0.051 -0.080 -0.047 -0.073
(0.129) (0.116) (0.115) (0.118) (0.110)
[0.186] [0.165] [0.165] [0.170] [0.144]

Price control (2008-2009) -0.152 -0.079 -0.112 -0.001 0.035
(0.149) (0.129) (0.124) (0.139) (0.139)
[0.127] [0.162] [0.169] [0.183] [0.156]

Sample mean of outcome variable in comparison period 1.465 1.465 1.465 1.465 1.465
Number of observations 1,043 1,043 1,043 1,039 1,030
Number of villages 54 54 54 50 50
Number of states 4 4 4 4 4
Adjusted R-squared 0.068 0.152 0.213 0.327 0.621

Wave fixed effects ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓
District fixed effects ✓ ✓ ✓
Village fixed effects ✓ ✓
Household fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household × survey wave. Data from
Kathage and Qaim (2012)’s panel survey. Sample: households interviewed in Wave 1 (2002-2003). All regressions are least
squares, as in Equation 1, with fixed effects (indicated in the last four rows of the table) and standard errors clustered at the
household level (in parentheses). The comparison period is 2004-2005, i.e., the pre-event survey wave. Treatment definition
in the panel header.
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Figure C3. Effects on Cotton Seed Sales

(a) Compared to Other Agricultural Inputs

(b) Compared to Other Seeds

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares regres-
sions with company and year fixed effects as in Equation 2. The comparison group is in the
subfigure caption. Standard errors clustered at the company level. Unit of observation: company
× product × year. Data from the Prowess database of the Centre for Monitoring Indian Econ-
omy. The outcome is expressed in natural logarithm, so that coefficients approximate percentage
changes from the pre-treatment comparison period (i.e., 2005). The vertical red line signals the
treatment timing. Estimates pooling pre- and post-treatment periods are in Appendix Table C17.
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Table C17. Treatment Effects on Cotton Seed Sales – Pooled Estimates

(1) (2) (3) (4) (5) (6)

Outcome: Sale values Quantities Sale values
(sample with
non-missing
quantities )

Compared to other agricultural inputs

Cotton seeds × Post (2006-2009) 0.592** 0.663*** 0.779** 0.994*** 0.903*** 0.773***

(0.235) (0.207) (0.355) (0.286) (0.331) (0.262)
Cotton seeds × Post (2010-2012) 0.087 0.040 0.241 0.468 0.107 0.138

(0.217) (0.178) (0.357) (0.312) (0.381) (0.296)
Cotton seeds × Post (2013-2015) 0.586** 0.439** 0.093 -0.351 0.251 -0.378

(0.247) (0.219) (0.613) (0.616) (0.648) (0.620)

Number of observations 6,795 6,795 2,359 2,359 2,222 2,222
Effective number of observations 6,795 6,516 2,359 2,205 2,222 2,072
Number of clusters 1,293 1,014 562 408 530 380
Adjusted R-squared 0.051 0.765 0.004 0.682 0.046 0.755

Compared to other seeds

Cotton seeds × Post (2006-2009) 0.453* 0.471** 0.800* 0.983*** 0.848** 0.756**

(0.244) (0.212) (0.413) (0.316) (0.355) (0.292)
Cotton seeds × Post (2010-2012) -0.038 -0.066 0.091 0.463 -0.245 0.024

(0.226) (0.185) (0.393) (0.323) (0.407) (0.310)
Cotton seeds × Post (2013-2015) 0.504** 0.406* -0.320 0.010 -0.120 -0.172

(0.254) (0.221) (0.604) (0.461) (0.700) (0.516)

Number of observations 4,885 4,885 1,477 1,477 1,382 1,382
Effective number of observations 4,885 4,663 1,477 1,349 1,382 1,261
Number of clusters 989 767 409 281 382 261
Adjusted R-squared 0.054 0.723 0.016 0.664 0.035 0.726

Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Company fixed effects ✓ ✓ ✓
Company × year fixed effects

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: company × product
× year. Data from the Prowess database of the Centre for Monitoring Indian Economy. Estimation sample
in the panel header. All regressions are least squares, as in Equation 2, with fixed effects (indicated in the
last three rows of the table) and standard errors clustered at the company level (in parentheses), where,
instead of interacting a dummy variable for each year with the treatment, we pool the periods after 2005
into three Post time groups. The outcome is expressed in natural logarithm, so that coefficients approximate
percentage changes from the pre-treatment comparison periods (i.e., 2000-2005). A graphical representation
of the dynamic estimates from Column (2) of the first and second panels is displayed in Figure C3.
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Table C18. Treatment Effects on Agronomic-Trial Yields of Cotton Varieties – Pooled
Estimates and Cluster-Robust Inference

(1) (2) (3) (4) (5) (6) (7) (8)

Price control × Post short-term (2007-2008) -124.2 -129.3 -155.6 -108.0 -114.8 -130.0 -130.1 -138.1
(38.5)*** (31.7)*** (30.9)*** (31.8)*** (29.9)*** (32.3)*** (32.4)*** (20.5)***

[102.7] [103.5] [106.4] [104.6] [100.6] [98.3] [98.1] [54.7]**

Price control × Post long-term (2009-2012) -226.5 -222.6 -250.4 -205.6 -208.8 -218.0 -218.2 -222.7
(30.6)*** (24.3)*** (22.3)*** (27.3)*** (24.2)*** (27.9)*** (28.2)*** (18.7)***

[69.5]*** [82.1]** [82.6]** [78.2]** [77.3]** [77.4]** [76.8]** [43.3]***

p-values from small-sample adjustments
Bell and McCaffrey (2002) 0.0141 0.0421 0.0819 0.0457 0.0413 0.0374 0.0368 0.0020
Pustejovsky and Tipton (2018) 0.0275 0.0623 0.1070 0.0693 0.0643 0.0598 0.0590 0.0484

p-values from wild-cluster bootstrap
with Rademacher weights 0.0310 0.0300 0.1170 0.0610 0.0590 0.0520 0.0580 0.1080
with Webb (2023) weights 0.0220 0.0270 0.1100 0.0600 0.0530 0.0520 0.0530 0.1030

p-values from cluster-robust t-statistic randomization inference <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Number of observations 2,524 2,524 2,524 2,523 2,523 2,523 2,523 2,523
Number of companies 34 34 34 34 34 34 34 34
Number of states 10 10 10 10 10 10 10 10
Adjusted R-squared 0.073 0.211 0.317 0.508 0.518 0.538 0.538 0.566

Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Variety zone fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Trial state fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Trial location fixed effects ✓ ✓ ✓ ✓ ✓
Company fixed effects ✓ ✓ ✓ ✓
Company × year fixed effects ✓ ✓ ✓
Controlling for varietal age at release ✓ ✓
Variety fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. All regressions are least squares, as in Equation 4, with fixed effects (indicated in the last six rows of the
table), where, instead of interacting a dummy variable for each year with the treatment, we pool the periods after 2006 into Post short-term (2007 and 2008) and Post long-term
(2009 onwards). Standard errors clustered at the company level in parentheses and clustered at the state level in brackets. The outcome is expressed in kilograms per hectare.
A graphical representation of the main dynamic estimates from the first panel is displayed in Figure 6.

Figure C4. Effects on Agronomic-Trial Yields of Cotton Varieties (Logged)

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares regressions
as in Equation 4: fixed effects are indicated in the legend below the graph. Standard errors clustered at
the company level. Unit of observation: seed variety × company × trial location. Data digitized from
the Bt reports of the All India Coordinated Research Project on Cotton of the Indian Council of
Agricultural Research. The outcome is expressed in natural logarithm, so that coefficients approximate
percentage changes from the pre-treatment comparison period (i.e., 2006). The vertical red line signals
the treatment timing. Estimates on the untransformed outcome (in kilograms per hectare) are in Figure
6.
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Figure C5. Effects on Agronomic-Trial Yields of Cotton Varieties – Robustness to
Distribution Moments

(a) Average (same as Figure 6) (b) Median

(c) Minimum (d) Maximum

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares regressions
as in Equation 4: seed variety release year fixed effects are included in all the models; additional fixed
effects are indicated in the legend below the graph. Standard errors clustered at the company level.
Unit of observation: seed variety × company × trial location. Data digitized from the Bt reports of
the All India Coordinated Research Project on Cotton of the Indian Council of Agricultural Re-
search. The outcome is expressed in kilograms per hectare. The vertical red line signals the treatment
timing.
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Figure C6. Effects on Agronomic-Trial Yields of Cotton Varieties – Robustness to
Time of Trial

(a) First Year of Trials

(b) Last Year of Trials

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares regres-
sions as in Equation 4: seed variety release year fixed effects are included in all the models;
additional fixed effects are indicated in the legend below the graph. Standard errors clustered at
the company level. Unit of observation: seed variety × company × trial location. Data digitized
from the Bt reports of the All India Coordinated Research Project on Cotton of the Indian
Council of Agricultural Research. The outcome is expressed in kilograms per hectare. The verti-
cal red line signals the treatment timing.
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Figure C7. Balance in Characteristics of Cotton Varieties Tested in Agronomic Trials

(a) Varietal Age at Release

(b) Probability of Approval

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares regres-
sions as in Equation 4: fixed effects are indicated in the legend below the graph. Standard errors
clustered at the company level. Unit of observation: seed variety × company × trial state. Data
digitized from the Bt reports of the All India Coordinated Research Project on Cotton of
the Indian Council of Agricultural Research. The outcome variable of panel (a) is defined as
the number of years elapsed from the first agronomic trial we observe in the data to the official
market release of the seed variety. The outcome of panel (b) is a binary variable equal to one if
the seed variety was approved and to zero otherwise. The vertical red line signals the treatment
timing.
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Table C19. Heterogeneous Treatment Effects on Agronomic-Trial Yields of Cotton
Varieties (Logged) – Pooled Estimates

(1) (2) (3) (4) (5) (6) (7) (8)

Firm is headquartered in price-controlled state

Price control × Post-2006 -0.148 -0.166 -0.210 -0.133 -0.142 -0.216 -0.216 -0.111
(0.098) (0.086)* (0.027)*** (0.038)*** (0.035)*** (0.037)*** (0.037)*** (0.021)***

[0.139] [0.138] [0.144] [0.131] [0.137] [0.152] [0.151] [0.080]

[...] × Heterogeneity margin -0.190 -0.165 -0.183 -0.178 -0.162 -0.085 -0.085 -0.121
(0.108)* (0.091)* (0.046)*** (0.050)*** (0.049)*** (0.065) (0.064) (0.033)***

[0.079]** [0.084]* [0.080]** [0.075]** [0.066]** [0.076] [0.078] [0.098]

Number of observations 2,524 2,524 2,524 2,523 2,523 2,523 2,523 2,523
Number of companies 34 34 34 34 34 34 34 34
Number of states 10 10 10 10 10 10 10 10
Adjusted R-squared 0.053 0.213 0.324 0.501 0.516 0.548 0.546 0.570

Firm size is below sample median

Price control × Post-2006 -0.247 -0.259 -0.315 -0.240 -0.235 -0.258 -0.258 -0.197
(0.048)*** (0.037)*** (0.036)*** (0.041)*** (0.039)*** (0.043)*** (0.045)*** (0.029)***

[0.155] [0.160] [0.164]* [0.140] [0.141] [0.151] [0.150] [0.069]**

[...] × Heterogeneity margin -0.272 -0.189 -0.203 -0.181 -0.194 -0.173 -0.174 -0.072
(0.082)*** (0.072)** (0.064)*** (0.069)** (0.068)*** (0.077)** (0.079)** (0.074)
[0.132]* [0.124] [0.109]* [0.102] [0.110] [0.106] [0.106] [0.073]

Number of observations 2,524 2,524 2,524 2,523 2,523 2,523 2,523 2,523
Number of companies 34 34 34 34 34 34 34 34
Number of states 10 10 10 10 10 10 10 10
Adjusted R-squared 0.055 0.214 0.324 0.502 0.517 0.548 0.547 0.569

Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Variety zone fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Trial state fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Trial location fixed effects ✓ ✓ ✓ ✓ ✓
Company fixed effects ✓ ✓ ✓ ✓
Company × year fixed effects ✓ ✓ ✓
Controlling for varietal age at release ✓ ✓
Variety fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. All regressions are least squares, as in Equation 4, with fixed effects (indicated in the last
seven rows of the table) and standard errors clustered at the household level (in parentheses), where, instead of interacting a dummy variable for each year
with the treatment, we pool all the periods after 2006 into Post. The outcome is expressed in natural logarithm, so that coefficients approximate percentage
changes from the pre-treatment comparison period (i.e., 2006).
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Table C20. Productivity Gains from New Seed Varieties

(1) (2) (3) (4) (5) (6)

New variety 0.195** 0.182** 0.175** 0.161** 0.165** 0.209***

(0.084) (0.080) (0.079) (0.072) (0.073) (0.080)

Number of observations 6,145 6,145 6,145 6,145 6,145 6,145
Number of clusters 607 607 607 607 607 607
Adjusted R-squared 0.087 0.163 0.193 0.274 0.301 0.316

Year fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Variety zone fixed effects ✓ ✓ ✓ ✓ ✓
Trial state fixed effects ✓ ✓ ✓ ✓
Trial location fixed effects ✓ ✓ ✓
Company fixed effects ✓ ✓
Company × year fixed effects ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: seed variety
× year × trial location. Data digitized from the Bt reports of the All India Coordinated Research

Project on Cotton of the Indian Council of Agricultural Research. All regressions are least squares, as
in Equation 5 with fixed effects (indicated in the last six rows of the table) and standard errors clustered
at the seed variety level (in parentheses). The outcome, i.e., lint yields, is expressed in natural logarithm,
so that coefficients approximate percentage changes.
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D Triple Difference-in-Differences Estimates
The Cost of Cultivation/Production Survey (CCS) covers the principal crops cul-
tivated in India and so allows us to extend our empirical design in Section 4.1 to a
triple difference-in-differences. We compare the evolution of cotton outcomes with
that of other crops, such as rice, wheat, etc.72 The event-study model becomes

Yi,c,t = αs(i) + αc + αt + ∑
τ ̸=−1

βτ · PriceCaps(i) · 1{c = cotton} · 1{t = τ}+ εi,c,t (D1)

where the notation is the same as for Equation 1 with the addition of index c that
refers to the crop cultivated by a certain household i in state s and time period t. The
identifying assumption of parallel trends now applies to the evolution of crop-level
counterfactual outcomes. In particular, βτ identifies the average treatment effect on
the treated (ATT) if cotton quantities had grown at the same rate across states, as
compared to other crops, in the absence of the treatment.

The results on seed and total production costs, presented in Appendix Figure D1,
decisively confirm the baseline findings in the paper (see Figure 3 for comparison).
The event-study point estimates are slightly smaller but maintain both a negative
sign and statistical significance at the 0.1 percent level for the vast majority of post-
treatment periods. We interpret this as evidence that state-level policy changes or
economic shocks, other than cotton seed price controls, are not responsible for our
results.

72 In the estimation sample used in this appendix, we have 499,302 observations, of which 37.6% refer to
rice cultivation, 16.4% to wheat, 4.9% to cotton, 4.2% to maize, 4.1% to mustard or rapeseed, 3.5% to
pearl millet, 3.4% to sugarcane, and 3.1% to soybeans. All the other crops are below 3%.
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Figure D1. Differential Treatment Effects on Costs per Acre

(a) Seeds

(b) Total

Notes: Event-study estimates with 95 percent confidence intervals based on least-squares regres-
sions as in Equation D1: year and season fixed effects are included in all the models; additional
fixed effects are indicated in the legend below the graph. Standard errors clustered at the vil-
lage level. Unit of observation: household × parcel × plot × crop × season × year. Data from
the Cost of Cultivation/Production Survey. The outcome is expressed in natural logarithm,
so that coefficients approximate percentage changes from the pre-treatment comparison period
(i.e., 2005). The vertical red line signals the treatment timing. Estimates pooling pre- and post-
treatment periods are in Appendix Table D1.
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Table D1. Differential Treatment Effects on Costs per Acre – Pooled Estimates

(1) (2) (3) (4) (5) (6)

Seeds

Price Control × Post-2005 × Cotton -0.534*** -0.531*** -0.664*** -0.692*** -0.663*** -0.598***

(0.054) (0.052) (0.052) (0.050) (0.048) (0.040)

Number of observations 477,653 477,653 477,653 477,652 477,649 477,649
Number of clusters 48,037 48,037 48,037 48,037 48,037 48,037
Adjusted R-squared 0.442 0.469 0.566 0.585 0.640 0.830

Total

Price Control × Post-2005 × Cotton 0.081** 0.088** -0.126*** -0.134*** -0.109*** -0.066***

(0.039) (0.038) (0.035) (0.034) (0.031) (0.020)

Number of observations 499,338 499,338 499,338 499,337 499,334 499,334
Number of clusters 48,293 48,293 48,293 48,293 48,293 48,293
Adjusted R-squared 0.309 0.365 0.512 0.533 0.606 0.857

Season fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Crop fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓
State fixed effects ✓ ✓ ✓ ✓
Village fixed effects ✓ ✓ ✓
Farm size fixed effects ✓ ✓
Other farm controls ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: household × parcel × plot ×
crop × season × year. Data from the Cost of Cultivation/Production Survey. All regressions are least squares, as
in Equation D1, with fixed effects (indicated in the last seven rows of the table) and standard errors clustered at the
household level (in parentheses), where, instead of interacting a dummy variable for each year with the treatment and
cotton indicator, we pool all the periods after 2005 into Post. The outcome is expressed in natural logarithm, so that
coefficients approximate percentage changes from the pre-treatment comparison periods (i.e., 2000-2005). ‘Other farm
controls’ are cultivated area, hours of attached labor, and total value of capital (all logged). A graphical representation
of the main dynamic estimates is displayed in Figure D1.
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E Structural Model: Details

E.1 Data Construction
Our main source of data to estimate the structural parameters from our model of
the Indian cotton seed market is the Cotton Crop Track by Francis Kanoi Market-
ing Research, a market research and consultancy company based in Chennai, Tamil
Nadu. Our estimation procedure, further detailed in Section E.2, requires two main
datasets: a product-level and a consumer-level dataset. This subsection reviews and
motivates the decisions made to construct both of these, while keeping the model
tractable for estimation.

Product Data. To begin with, we assume farmers choose among brands (i.e., seed-
producing firms) rather than specific varieties. This is a result of both the detail of
survey responses, which always include the brand but do not record the specific vari-
ety in a consistent and systematic way across data collection waves, and of our sample
size, where some varieties are planted by very few farmers.73 As a consequence, in
our model, a differentiated product represents a portfolio of varieties offered by a seed
firm in a market. Even though seed firms may sell more than one variety in the same
market (according to our data, an average of 3.29 and a median of 2 varieties), our
definition of a seed brand captures key attributes that matter most to farmers, such as
the nature of the germplasm and the presence of genetically engineered (GE) traits.

We restrict our attention to the 14 largest Bt brands in our data. We collapse all
other Bt varieties into a residual brand that we define as “Other Bt” and collapse all
non-Bt varieties into two categories: “Desi public varieties” and “Non-Bt hybrids”.
Table E1 presents the shares of each brand by year: our 14 main brands of Bt cotton
cover more than 90% of the Bt market. Two prominent patterns emerge: between
2002 and 2005, the adoption of GE varieties was low, with only three brands offering
varieties containing this genetic trait (Mahyco in both 2002 and 2005, Navabharat and
Rasi only in 2005). During the early years of Bt, non-GE hybrid varieties were the
most popular choice among cotton farmers with around 20% of market share for
public varieties (which can be saved for more than one cropping season) and 70%
for hybrids (which have to be re-purchased every season to avoid steep productivity
losses). After price controls were enacted by state governments, both the number of
companies selling Bt cotton and the share of Bt adoption went up significantly, the
latter passing 95% by 2013. This major shift aligns with the reduced-form evidence
presented in Section 4 and illustrates the rich variation in seed choice in our data,
covering both the early years of Bt in India and the subsequent development of a
more mature market. Finally, we notice that the Herfindahl-Hirschman Index (HHI)
is equal to 1,000, on average, and relatively stable over time. According to the Merger
Guidelines of the United States Department of Justice and Federal Trade Commission,
this level of HHI is indicative of a “moderately concentrated” market.

We construct choice sets at the market level. We define a market as a district-year pair
and assume that any product (i.e., brand) that was bought by at least one farmer in
that district-year is available to all farmers in the same district and year. We make

73 There were more than 1,000 Bt varieties approved between 2002 and 2014, i.e., our sample period
for the structural analysis. In addition, qualitative interviews highlight that varietal turnover was
generally high during this period, partly due to the proliferation of hybrid cotton varieties in the
aftermath of Bt introduction in India (Stone, 2007; Ramaswami et al., 2009).
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Table E1. Individual Product Choice: Data Frequency and Shares

Year →
2002/2003 2004/2005 2008/2009 2013/2014 Total

Brand ↓ N % N % N % N % N %

Ajeet 934 3.75 2,512 14.02 3,446 4.20
Ankur 1,428 5.73 1,422 7.93 2,850 3.48
Bio-seeds / Sri Ram 985 3.95 1,087 6.07 2,072 2.53
Desi/Public varieties 4,491 23.42 4,181 20.97 269 1.08 128 0.71 9,069 11.06
JK Seeds 381 1.53 200 1.12 581 0.71
Kaveri 203 0.81 2,337 13.04 2,540 3.10
Krishidhan 550 2.21 211 1.18 761 0.93
Mahyco 1,042 5.43 1,718 8.62 2,132 8.55 2,061 11.50 6,953 8.48
Monsanto / Paras 1,230 4.93 947 5.28 2,177 2.66
Navabharat 436 2.19 359 1.44 795 0.97
Non-Bt hybrids 13,647 71.15 12,275 61.56 326 1.31 278 1.55 26,526 32.36
Nuziveedu 5,831 23.39 2,637 14.71 8,468 10.33
Other Bt 2,554 10.25 1,541 8.60 4,095 5
Rasi 1,331 6.67 4,781 19.18 1,378 7.69 7,490 9.14
Tulasi 1,546 6.20 394 2.20 1,940 2.37
Vibha Agrotech 912 3.66 65 0.36 977 1.19
Vikram 506 2.03 724 4.04 1,230 1.50

Total 19,180 100 19,941 100 24,927 100 17,922 100 81,970 100

HHI 1,480 966 1,422 1,029 1,000

Notes: Unit of observation: household × plot. Data from Francis Kanoi Marketing Research’s Cotton Crop Track. All
brands other than ‘Desi/Public varieties’ are hybrids; all brands other than “Desi/Public varieties’ and ‘Non-Bt hybrids’
are Bt hybrids. Even columns report the count of observations of a certain brand in a certain agricultural season. Odd
columns report the brand percentage, relative to the total number of observations in that season. Empty cells indicate
frequencies equal to zero. The HHI in the last row is computed as the sum of squared market shares of private companies
(rather than brands, after dropping public varieties and missing values); the index is scaled from 0 to 10,000.

this assumption because this is the smallest level of aggregation at which we can
compute our product-level variables on cotton, allowing us to capture substantial
heterogeneity in product characteristics that farmers take into account for their seed
choices.

Our key product characteristics are price and yield. We input the average price paid
for all varieties offered by a brand in a particular district-year pair as the price for
that brand. An obvious choice for measuring yields would be the agronomic yield
data used in the reduced-form analysis of technological innovation (Section 4.4). As
noted in Footnote 20, these data come from experimental field trials, as carried out
by agricultural researchers in testing centers, and so are not affected by other endoge-
nous decisions by farmers, which would take place after the observed seed choice.
However, they are only available for a subset of market-brand pairs (namely, 296 out
of 1,980 observations) and are not available for non-Bt varieties. A brand’s yield is
therefore computed as the maximum yield in our survey data across all farmers in a
market, a proxy of “expected yield at purchase”.74 We keep this measure in physical

74 Unlike prices, information on yields is not officially released to buyers, e.g., through advertising on
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units (i.e., quintals of unginned cotton per hectare) in order to capture expected pro-
duction without conflating it with changes in expected output prices. Variation in the
latter is likely to affect farmers’ decisions to cultivate cotton, rather than substitution
patterns across different brands. We model this extensive-margin choice through a
market-varying utility from the outside option (Equation 7).

Product-level variables from complementary data sources are taken at the state-year
level due to the fact that not all districts are sampled for such data. In particular, we
construct a measure of outside option profits per hectare, which aims to reflect the
profitability from cultivating crops other than cotton.

Summary statistics on product characteristics are reported in Table E2.

Table E2. Product Characteristics: Summary Statistics

(1) (2) (3) (4) (5)
Mean Std. Dev. Median 25th pct. 75th pct.

Seed price (’00 |) 7.93 3.00 7.64 7.12 9.30
Physical yield (’00 kg/ha) 10.48 4.17 10.00 7.50 13.50

Outside option profits (’00 |/ha) 171.84 140.84 112.40 80.64 225.98

Number of rival varieties 27.79 12.84 28.00 18.00 37.00
Number of own varieties 3.29 4.06 2.00 1.00 4.00

Number of products 1,918
Number of markets 240
Number of brands 17

Notes: Unit of observation: brand × market (i.e., district × year). Data on inside goods from Francis
Kanoi Marketing Research’s Cotton Crop Track. Data on outside goods sampled with replacement
from the Cost of Cultivation/Production Survey to match shares from the Crop Production

Statistics (CPS).

Consumer Data. We include all observations in the four waves of our farmers’ micro-
data. Importantly, our individual choice data only includes observations from cotton
farmers. To incorporate extensive-margin choices (i.e., growing crops other than cot-
ton), we augment the sample using draws from a nationally representative survey of
farmers growing any crop.75 We sample farmers with replacement from the Cost of

Cultivation/Production Survey (CCS) in a proportion that makes the share of ob-
servations choosing inside goods (i.e., cotton seeds) match the share of total acreage

seed packets, given the wide heterogeneity in productivity by growing conditions and practices; how-
ever, at the moment of purchase, farmers tend to discuss expected yields with input agrodealers, who
are in turn informed about previous trials by seed companies. Given that our model does not feature
any market intermediaries, we are implicitly assuming that input agrodealers collectively help farm-
ers choose the product with price and quality that maximizes their utilities. On the supply side, we
do not model retail pricing decisions either. Our implicit assumption is that retailers charge constant
markups, which are not affected by price controls.

75 Following the recommendations of Nevo (2000), we check the sensitivity of our results to the market
definition. In particular, to compute the outside good shares, we restrict our attention to the main
alternative crops to cotton in the Indian setting, i.e., sorghum, pearl millet, groundnut, soybeans,
sunflower, rice, maize, green gram, and pigeon peas. The demand estimates using the latter approach
are very similar to our baseline specification.
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planted under cotton in the districts where the main farmers’ survey was carried out.
We obtain these shares from our district-level acreage measures obtained from the
Crop Production Statistics (CPS) of the Directorate of Economics and Statistics in
the Ministry of Agriculture and Farmers Welfare. Table E3 presents the frequencies
and shares of inside and outside goods. The share of cotton farmers ranges between
9% in 2013 and 15% in 2004. As a result, the final sample for our demand estimation
is of 628,143 micro-consumers.

Table E3. Inside and Outside Goods: Frequencies and Shares

Year →
2002/2003 2004/2005 2008/2009 2013/2014 Total

Chosen option ↓ N % N % N % N % N %

Inside good: cotton 18,282 10.94 19,398 15.15 17,734 13.84 17,922 8.75 73,336 11.68

Outside option 148,826 89.06 108,655 84.85 110,407 86.16 186,919 91.25 554,807 88.32

Total 167,108 100.00 128,053 100.00 128,141 100.00 204,841 100.00 628,143 100.00

Notes: Unit of observation: household × plot. Inside good observations from Francis Kanoi Marketing Research’s Cotton Crop

Track. Outside good observations sampled with replacement from the Cost of Cultivation/Production Survey to match
shares from the Crop Production Statistics. Even columns report the count of observations in a certain agricultural season.
Odd columns report the percentage, relative to the total number of observations in that season.

For all observations (from the cotton farmers’ data or the non-cotton CCS draws) we
also include a measure of plot size, i.e., hectares under cultivation, to allow pref-
erences to be heterogeneous across farmers. Among our sample of cotton farmers,
we have additional demographics: summary statistics on these demographics can be
found in Table E4 (Columns 1 to 5). Plot size is positively correlated with education,
asset ownership, total landholdings, and mechanization (Column 7). Therefore, we
view plot size as a proxy of scale of cultivation, use of complementary technologies,
and wealth.
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Table E4. Demographics of Cotton Farmers

(1) (2) (3) (4) (5) (6) (7)
Mean Std. Median 25th 75th No. of Correlation

Dev. pct. pct. obs. with
plot size

Age 40.28 12.51 40 31 48 20,464 0.421

Education
No education 0.137 0.344 0 0 0 20,464 -0.043
Has primary education 0.217 0.412 0 0 0 20,464 -0.038
Has middle education 0.197 0.398 0 0 0 20,464 0.027
Has secondary education 0.221 0.415 0 0 0 20,464 0.012
Has senior secondary education 0.114 0.318 0 0 0 20,464 0.008
Has undergraduate degree 0.049 0.216 0 0 0 20,464 0.031
Has graduate or professional degree 0.020 0.141 0 0 0 20,464 0.024

Durable assets
Owns a telephone 0.140 0.347 0 0 0 14,888 0.118
Owns a television 0.481 0.500 0 0 1 14,888 0.110
Owns a refrigerator 0.132 0.338 0 0 0 14,888 0.212
Owns a moped 0.308 0.462 0 0 1 14,888 0.150
Owns a motorcycle 0.018 0.133 0 0 0 14,888 0.040
Owns a car 0.011 0.104 0 0 0 14,888 0.142
Owns a truck 0.002 0.042 0 0 0 14,888 0.041

Landholding
Under cotton cultivation 3.63 12.36 1.00 3.00 4.00 20,464 0.421
Total 7.26 41.16 5.00 2.50 8.00 13,950 0.148

Mechanization
Owns a tractor 0.099 0.299 0 0 0 18,140 0.283
Used a tractor 0.568 0.495 1 0 1 11,101 0.283

Notes: Unit of observation: household for Columns (1) to (6), household × plot for Column (7). Data from Francis Kanoi
Marketing Research’s Cotton Crop Track. Durable assets and total landholding were not asked in the 2002/2003 wave,
tractor usage was not asked in the 2009/2010 and 2013/2014 waves, explaining the missing values compared to the other
variables; other missings are due to the interviewee not answering the question. All the variables under the ‘Education’
and ‘Durable assets’ panels are binary variables (0/1). ‘Primary education’ indicates up to Grade 6, ‘middle’ up to Grade
8, ‘secondary’ up to Grade 10, and ‘senior secondary’ up to Grade 12.

E.2 Demand: Details

For notational simplicity, we express all the components of the utility of inside goods
as differences relative to the utility of the outside option. Thus, δbm ≡ α · pbm + γ ·
ybm + ξm + ξbm − β1 ·Π0m − β2 · tm. This can be expressed in matrix form as δ⃗ = XT

bm β⃗.
Further, let µz

f bm = µ
z f m
bm (θz) − µ

z f m
0m (θz) and θ⃗ =

[
θz, θν

]
. Then, our parameters of

interest become
(

β̂, θ̂, δ̂
)
, which are the solution to(

β̂, θ̂, δ̂
)
= arg min

β,θ,δ

(
− log L̂micro(θ, δ)− log L̂Macro(θ, δ) + Π̂(β, δ)

)
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where L̂ denotes likelihood functions and Π̂ is a vector of product-level moment
conditions. The first, ‘micro’ term is the log-likelihood of the sample of farmer in-
dividual choices, which follows the mixed logit. The second, ‘Macro’ term is the
log-likelihood of the market shares: it integrates over the distribution of farmer char-
acteristics in the population. The third term directly incorporates information from
the product-level exogeneity restrictions, which are additional assumptions on the
data-generating process.

Let d f bm = 1 if a farmer f chooses brand b in market m and d f bm = 0 otherwise.
Under the assumption that preference shocks ε in Equation 6 are independent and
identically distributed (iid) and follow a type 1 extreme value (Gumbel) distribution,
we can express choice probabilities for farmer f selecting brand b given their plot size
z and product characteristics X := (p, y, ξ) for any set of parameters (θ, δ). Formally,

π
z f m
bm ≡ Pr

{
d f bm = 1

∣∣ z f m, Xm; θ, δ
}
=

∫
exp(δbm + µz

f bm − µν
f 0m)

1 + ∑Jm
ℓ=1 exp(δℓm + µz

f ℓm − µν
f 0m)

dFm(ν)

Unconditional choice probabilities, or expected market shares, are obtained in a sim-
ilar fashion by integrating π

z f m
bm with respect to the distribution of farmer plot sizes

πbm ≡ Pr
{

d f bm = 1
∣∣ xm θ, δ

}
=

∫
π

z f m
bm (θ, δ) dGm(z)

where the G distribution is taken from the data. Now, let S f m be equal to 1 if a farmer
f is in the ‘micro’ sample of a certain market m and to 0 otherwise. Then, using our
model choice probabilities, we can write the mixed-data likelihood as

log L̂(θ, δ) =
M

∑
m=1

Bm

∑
b=0

Nm

∑
f=1

d f bm

(
S f m log

(
π

z f m
bm (θ, δ)

)
+ (1 − S f m) log

(
πbm(θ, δ)

))

=
M

∑
m=1

Bm

∑
b=0

Nm

∑
f=1

S f md f bm log
(

π
z f m
bm (θ, δ)

πbm(θ, δ)

)
+

M

∑
m=1

Nm

Bm

∑
b=0

∑Nm
i=1 d f bm

Nm
log πbm(θ, δ)

This expression clearly separates the contribution of the farmer-level data, from the
first term, and the market-level data, from the second term. In order to avoid farmers
observed in the micro-sample are double counted in the second Macro-term, the
estimator can be rewritten as

log L̂(θ, δ) =
M

∑
m=1

Bm

∑
b=0

Nm

∑
f=1

S f md f bm log π
z f m
bm +

M

∑
m=1

Bm

∑
b=0

(
Nmsbm −

Nm

∑
f=1

S f md f bm

)
log πbm(θ, δ)

where the first term captures the contribution of consumer-level ‘micro’ data, while
the second term captures the contribution of product-level ‘Macro’ data. π

z f m
0m is the

model choice probability of the outside good, b = 0, and π0m its market share.

The second part of the objective function of our estimator arises from imposing mo-
ment conditions on the unobserved utility, or structural error, ξbm. These involve
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exogeneity restrictions of the form

E
[
ξbm

∣∣∣Wdemand
bm

]
= 0

where Wdemand is a vector of instruments. These exogeneity restrictions are needed
to identify the mean product utility parameters β⃗. Formally, the penalty function is

Π̂(β, δ) =
1
2

m̂T(β, δ) Ŵ m̂(β, δ)

where

m̂(β, δ) =
M

∑
m=1

Bm

∑
b=1

Wdemand
bm (δbm − βTxbm)

and Ŵ is the optimal GMM weighting matrix converging to the inverse of V(Wdemand
bm ξbm).

As mentioned in Grieco et al. (2025), when the model is exactly identified (i.e., if
the dimension of β equals that of Wdemand), the estimator is equivalent to a two-step
procedure that estimates θ̂ and δ̂ through maximum likelihood estimation and then
estimates β̂ through GMM using δ̂. When the model is over-identified, both L̂ and Π̂
contribute to estimating θ and δ.

E.3 Supply: Details

Aggregation. As mentioned above, a market is defined at the district-year level to
better capture local variation in product characteristics and consumers’ choice set.
Firms typically target a larger consumer base when designing a seed variety and incur
common costs at a larger scale. Therefore, we aggregate product characteristics and
demand estimates (namely, price and yield derivatives and elasticities) at the state-
by-year level. We do so by taking their weighted average at the district-by-year level
and using conditional choice probabilities within each state-year pair. This results in
a sample of 323 observations and 35 relevant “macro” markets for the supply-side
analysis.

We calculate market size in the following three steps. First, in our main dataset, we ob-
serve the distribution of plot sizes and the total acreage under cotton in each market
across four strata: up to 2 acres, over 2 and up to 5 acres, over 5 and up to 10 acres,
over 10 acres. By combining this information, we can approximate the number of cot-
ton farmers in each market-strata pair and obtain an estimate of total cotton farmers
in India. Second, we use the CPS data to calculate the ratio of non-cotton farmers to
cotton farmers. Finally, to get at total farmers, we scale this ratio by our estimate of
cotton farmers and add the result to the latter. Figure E1 plots the resulting number
of farmers over time. This procedure provides a close match with national estimates
of the farming population during the study period.76

Given that cotton farmers typically purchase more than one seed packet (2.9, on
average in our sample), we multiply the number of farmers by the average number

76 For comparison, the 70th round of the National Sample Survey by the Ministry of Statistics and Pro-
gramme Implementation estimated 90.2 million agricultural households in India, of which 33.6 million
in the nine cotton states we consider in our analysis (NSSO, 2014).
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of seed packets purchased at the district-year level to obtain our final measure of
potential market size. The resulting estimate of total cotton seed packets aligns well
with the one by (Pray and Nagarajan, 2010, p. 303). Average seed packets purchased
will also be used to rescale per-packet surplus (i.e., total surplus shown in Column 5
in Table 4 divided by total seed packets) to per-farmer surplus (Column 6).

Figure E1. Market Size by Year

Notes: Unit of observation: year. Cotton farmers are calculated in each market-strata pair
using plot size distributions and total acreage data from Francis Kanoi Marketing Research’s
Cotton Crop Track. Total farmers are calculated by scaling the latter to match cotton shares
from the Crop Production Statistics.

Marginal Cost Estimation. This paragraph details the estimation procedure to re-
cover marginal costs in constrained markets using our supply-side estimates from
unconstrained markets. We assume that marginal costs can be decomposed into
the expression in Equation 9, i.e., a linear function of yields, a brand component, a
Bt-specific trend, and an unobserved cost shock that is brand-market specific. To esti-
mate these components in unconstrained markets (i.e., all markets before 2006 and the
non-price-controlled states from 2006 onward), we follow the three-step procedure
outlined in Section 5.2. Provided that these three components are identified under
our assumptions in Footnote 56, the remaining νmc is mean-zero. We can then predict
marginal costs for any market, including constrained markets (i.e., price-controlled
states after 2006), as

m̂cbm = ω̂ · yjt + ξ̂b + κ̂ · t1{b∈Bt}

This step implicitly assumes that the cost structure estimated from unregulated mar-
kets – including both the fixed components and the relationship between yields and
costs – can be extrapolated to regulated markets.
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E.4 Counterfactuals: Algorithm

Consider a market, m, with price cap policy, such that P = (0, p̆], where p̆ is the price
cap and p̆ = +∞ in the absence of such policy. Following Barwick et al. (2024), and
their matrix notation, an equilibrium outcome is defined as the set of prices p ∈ P
and yields y ∈ R++ that satisfy firms’ first-order conditions (FOCs), conditional on
profits Π being positive.

Let

dMy =


∂mc1
∂y1

0 · · · 0

0 ∂mc2
∂y2

· · · 0
...

... . . . ...
0 0 · · · ∂mcJ

∂yJ

 and dFCx =


∂FC1
∂y1

∂FC2
∂y2
...

∂FCJ
∂yJ


Then, the unconstrained FOCs are:

dΠp := Q + Ω ⊗ ∆p(p − r − mc) = 0
dΠy := −dMyQ + Ω ⊗ ∆y(p − r − mc) = dFCy

where dΠp and dΠy represent the derivatives of total profit with respect to a firm’s
choice variables, i.e., price and yield, respectively. Q is quantity sold, r are trait fees,
and mc are marginal costs. See Equations 11 and 12 in the main body of the paper.

The iterative Algorithm 1 jointly updates (the vectors of) product characteristics until
changes become trivial, using the following quasi-Newton method.77

Price Caps. To capture price caps, we add a slack parameter, λ, in regulated markets,
such that the actual maximization problem of price-controlled firms becomes

max
pbm∈R++

ybm∈R++

Πbm
(

p⃗m, y⃗m
)
− λ · 1

{
pbm > p̆m

}(
pbm − p̆m

)2

The first term is the same as in Equation 8. The second (and new) term applies a
penalty for pricing above the mandated cap, {pbm > p̆}: firms have to pay a “mone-
tary fine” that is convex in the magnitude of their violation, (pbm − p̆). The resulting
price FOC explicitly features a “numerically friendly” version of the cap, resembling
the intended firm behavior:

[pbm] : Qbm +
(

pbm − rm − mcbm(ybm)
)(

∂Qbm
∂pbm

)
= 2λ · 1

{
pbm > p̆

}(
pbm − p̆

)
77 To guide optimization, we compute the FOC violations at the beginning of each iteration and ap-

ply a diagonal Hessian approximation, where updates are obtained as dp = FOCp ⊘
∣∣∣ ∂Q

∂p

∣∣∣ , dy =

FOCy ⊘
∣∣∣ ∂Q

∂y

∣∣∣; ⊘ denotes element-wise division. If the preferred simultaneous price-yield update fails
to reduce the overall FOC violation (defined as the maximum of the normalized L2-norms of price
and yield FOCs), we fall back to: (i) sequential price-then-yield updates, (ii) targeted updates focusing
on the three worst-violating products, (iii) collective price reductions for all products at the regulatory
cap (see the next paragraph for details on how we account for price caps), and (iv) individual price
adjustments for each capped product.
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Algorithm 1 Estimating Counterfactual Outcomes

for each market m ∈ M do

Initialize pold = pinitial, yold = yinitial

while max
{

∥dp∥2

∥pold∥2 , ∥dy∥2

∥yold∥2

}
≥ 1e-4 do

Compute sales Q, marginal costs mc, and demand derivatives (∆p, ∆y)

Solve price FOC: dΠp +
[
∆p + (Ω ⊗ ∆p)T] dp = 0

Solve yield FOC: dΠy −
[
My∆y + (Ω ⊗ ∆y)T My

]
dy = dFCy

Update prices and yields: pnew = pold + dp, ynew = yold + dy

Update sales Q, marginal costs mc, and demand derivatives (∆p, ∆y)

Reset prices and yields for next iteration: pold = pnew , yold = ynew

Return updated equilibrium prices and yields for market m
p⋆ = pnew, y⋆ = ynew

We therefore adjust the calculation of the price FOC in Algorithm 1 as follows: (i) for
prices above the cap, i.e., pbm > p̆, we set λ to a very large value so as to approximate
a discontinuous constraint in the profit maximization problem; (ii) when prices are at
the cap, i.e., pbm = p̆, and the unconstrained price FOC is negative, we set the latter
to zero so that pnew

bm = pold
bm = p̆; (iii) for the remaining cases, i.e., if the price cap does

not affect firms’ decision, the penalty term becomes inactive, so we proceed as for
unregulated markets and just use the unconstrained FOC.

Farm Input Subsidy. Input subsidies affect the FOCs in the following two ways. First,
farmers choose a brand based on the vector of subsidized prices, psub↣ f = (1− τ) · p
Second, using the chain rule, price derivatives for Bt brands, b ∈ Bt, become:

∂Qbm
∂pbm

=
∂Qbm

∂psub↣ f
bm

·
∂psub↣ f

bm
∂pbm

=
∂Qbm

∂psub↣ f
bm

· (1 − τ)

For non-Bt brands, the price derivative and resulting FOC apply unchanged since
τ = 0 and thus (1 − τ) = 1.

The total government expenditure, B, in market m, is calculated by multiplying the
chosen subsidy rate by the equilibrium price and quantity of subsidized products
sold. Namely,

Bsub↣ f
m = ∑

b∈Bt
τ · pbm · Qbm

This calculation makes it clear how the budgetary cost of input subsidies depends
not only on the subsidy rate applied, but also on the equilibrium market response
through quantity demanded and the endogenous price adjustments by firms, poten-
tially amplifying such cost beyond the mechanical effect of the subsidy alone.

Firm Innovation Subsidy. We consider a certain innovation budget, Bsub↣j
m , for each
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market and allocate it proportionally to firms that operate in that market based on
their yield performance. Specifically, each product bm receives a grant of Gbm (⃗ym) =

Bsub↣j
m · ybm

∑b ybm
. This performance-based allocation ensures that higher-yielding prod-

ucts capture larger shares of the innovation budget; e.g., if product A achieves twice
the yield of product B, then A receives exactly twice the grant allocation of B. The
grant payment is then used to reduce the slope of the fixed cost in the yield FOC

(Equation 12), so that ∂FCsub↣j
bm

∂ybm
= ϕ′ + ϕ′′ · ybm − Gbm (⃗ym), generating incentives for

quality competition and yield improvement. The price FOC remains the same as in
the standard case given that farmers continue to pay the full price.

E.5 Auxiliary Results and Robustness

Table E5. First Stage of Demand Instrumental Variables

(1) (2)

Number of rival varieties -0.007 -0.010*

(0.006) (0.006)
Number of own varieties -0.184*** -0.243***

(0.014) (0.018)

Own yields (’00 kg/ha) 0.134***

(0.020)

Number of observations 1,918 1,918
Number of markets 240 240
F-statistic 96.0 64.1

Notes: *Significant at 10%. ***Significant at 1%. Unit of
observation: brand × market (i.e., district × year). The
outcome variable is average prices in Indian rupees (|)
per 450-gram bag, the typical size of a hybrid cotton seed
package (enough to plant an acre of land) in India. Data
from Francis Kanoi Marketing Research’s Cotton Crop

Track. All regressions are least squares with clustered
standard errors at the market level (in parentheses). The
estimates of the second stage are in Table 2.
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Table E6. First Stage of Supply Instrumental Variables

(1) (2) (3)

Plot size (ha) 1.432** 1.439** 1.494***

(0.598) (0.603) (0.565)
Outside option log-profits-per-ha -3.059*** -2.828*** -5.065***

(0.492) (0.545) (0.953)
Interaction (centered) 4.270*** 4.204*** 4.173***

(1.126) (1.128) (1.122)
Bt linear time trend -0.000 0.431***

(0.000) (0.134)

Number of observations 226 226 226
Effective F-statistic 17.1 13.0 13.2

Product fixed effects ✓

Notes: **Significant at 5%. ***Significant at 1%. Unit of observation: brand ×
state × year. The outcome variable is yields (in 100 kilograms per hectare).
Data on inside good from Francis Kanoi Marketing Research’s Cotton Crop

Track. Data on outside good sampled with replacement from the Cost of

Cultivation/Production Survey to match shares from the Crop Produc-
tion Statistics. All regressions are least squares with robust standard errors
(in parentheses). The effective F-statistic is based on the weak instrument test
of Montiel Olea and Pflueger (2013). The second stage is in Table 3.

Figure E2. Distribution of Price and Yield Elasticities

Notes: The two histograms plot price (in red) and quality (in green) elasticities implied by the structural
estimates of demand in Table 2. Unit of observation: market × product. The vertical axis indicates the
share of observations that have a value of elasticity within the bin in the horizontal axis.
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Figure E3. Distribution of Marginal Cost Estimates

Notes: The two histograms plot marginal costs of non-Bt brands (i.e., desi public varieties and non-Bt
hybrids) and of Bt brands. Marginal costs are recovered through the estimation procedure outlined
in Section 5.2 and Appendix Section E.3. Unit of observation: brand × state × year. The vertical axis
indicates the share of observations that have a value of marginal costs within the bin in the horizontal
axis.

Table E7. Treatment Effects on Structural Model Outcomes

(1) (2) (3) (4) (5) (6)

Prices Yields of Bt products

Price control × Post-2005 -0.602*** -0.585*** -0.483** -0.243* -0.241* -0.141*

(0.175) (0.143) (0.147) (0.116) (0.115) (0.071)

Number of observations 321 321 321 245 245 245
Number of clusters 9 9 9 9 9 9

Year fixed effects ✓ ✓ ✓ ✓
State fixed effects ✓ ✓

Notes: *Significant at 10%. **Significant at 5%. ***Significant at 1%. Unit of observation: brand × state
× year. All regressions are least squares with fixed effects (indicated in the last two rows of the table),
weighted by brand share within each state-year, and clustered standard errors at the state level (in
parentheses). Equilibrium outcomes on the right hand side are consistent with our structural model
in Section 5 and estimated through the quasi-Newton algorithm described in Appendix E.4. They
are expressed in natural logarithms, so that coefficients approximate percentage changes.
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Figure E4. Slope of Fixed Costs

Notes: The solid orange line plots the slope of fixed costs, as defined in Equation 10, using
GMM estimates from Column (3) of Table 3. 95 percent confidence intervals, based on
robust standard errors, are shaded.
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Figure E5. Goodness of Fit between Data and Model

(a) Prices

(b) Yields

Notes: Unit of observation: brand × state × year. Data on prices and yields (on the
y-axis) are from Francis Kanoi Marketing Research’s Cotton Crop Track. Equilibrium
outcomes are consistent with our structural model in Section 5 and estimated through the
quasi-Newton algorithm described in Appendix E.4.
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Figure E6. Average Product Characteristics by Counterfactual Price Caps

(a) Prices

(b) Yields

Notes: ***Significant at 1%. Unit of observation: brand × state × year. Average equilibrium
outcomes (on the y-axis) are consistent with our structural model in Section 5, estimated
through the quasi-Newton algorithm described in Appendix E.4, and weighted by product
market share. The lines start at the observed price cap: |750 in 2008 and |930 in 2013.
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Figure E7. Distribution of Welfare Gains across Plot Size

Observed Policy versus Benchmark

(a) Full Population of Farmers (b) Sub-Population of Cotton Farmers under
Benchmark Scenario of No Policy

Input Subsidy versus Innovation Grant

(c) Full Population of Farmers (d) Sub-Population of Cotton Farmers under
Benchmark Scenario of No Policy

Notes: ***Significant at 1%. Unit of observation: household × plot. Estimation sample in the figure
caption. Binned scatterplots are obtained by grouping farmer surplus ratio (on the y-axis) and plot
size (on the x-axis) into twenty equal-sized bins. The solid line plots a linear fit, i.e., the prediction for
farmer surplus ratio on plot size. Farmer surplus under each scenario is based on the logit formula in
Equation 13. The ratios are equal to farmer surplus under price controls (“observed policy”) divided
by farmer surplus under no policy (“benchmark”) in the upper panel and to farmer surplus under a
54.9% linear farm subsidy (“input subsidy”) divided by farmer surplus under an aggregate-welfare-
equivalent firm subsidy (“innovation grant”) in the bottom panel. Data on plot size for cotton farmers
are from Francis Kanoi Marketing Research’s Cotton Crop Track and for non-cotton farmers are
sampled with replacement from the Cost of Cultivation/Production Survey to match shares from
the Crop Production Statistics.
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